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Abstract. Recently, the problem of representing uncertainty in Descrip-
tion Logics (DLs) has received an increasing attention. In probabilistic
DLs, axioms contain numeric parameters that are often difficult to spec-
ify or to tune for a human. In this paper we present an approach for
learning and tuning the parameters of probabilistic ontologies from data.
The resulting algorithm, called EDGE, is targeted to DLs following the
DISPONTE approach, that applies the distribution semantics to DLs.

1 Introduction

Recently, the problem of representing uncertainty in description logics (DLs) has
received an increasing attention due to the ubiquity of uncertain information in
real world domains. Various authors have studied the use of probabilistic DLs
and many proposals have been presented for allowing Description Logics(DLs)
to represent uncertainty [8,13,7].

In [9,10] we proposed an approach for the integration of probabilistic infor-
mation in DLs called DISPONTE for “DIstribution Semantics for Probabilistic
ONTologiEs” (Spanish for “get ready”). DISPONTE applies the distribution se-
mantics for probabilistic logic programming [11] to DLs. DISPONTE allows two
types of probabilistic axioms: an epistemic type, that represents a degree of belief
in the axiom as a whole, and a statistical type, that considers the populations
to which the axiom is applied.

However, specifying the values of the probabilities is a difficult task for hu-
mans. On the other hand, data is usually available about the domain that can
be leveraged for tuning the parameters. In this paper we present a machine
learning approach for learning the parameters of probabilistic ontologies from
data. The resulting algorithm, called EDGE for “Em over bDds for description
loGics paramEter learning”, is targeted to DLs following the DISPONTE se-
mantics. EDGE starts from examples of instances and non-instances of concepts
and builds Binary Decision Diagrams (BDDs) for representing their explanations
from the theory. The parameters are then tuned using an EM algorithm [5] in
which the required expectations are computed directly on the BDDs.

We also present preliminary experiments comparing the parameters learned
by EDGE with those derived from an association rule learner [13,7] for a real



world dataset. The results show that EDGE achieves significantly higher areas
under the Precision Recall and the Receiver Operating Characteristics curves.

The paper is organized as follows. Section 2 introduces Description Logics and
the DISPONTE semantics while Section 3 describes EDGE. Section 4 discusses
related works and Section 5 shows the results of experiments with EDGE. Section
6 concludes the paper.

2 Description Logics and the DISPONTE semantics

Description Logics (DLs) are knowledge representation formalisms that are par-
ticularly useful for representing ontologies. They are usually represented using a
syntax based on concepts and roles. A concept corresponds to a set of individuals
of the domain while a role corresponds to a set of couples of individuals of the
domain. In the following we consider and describe ALC [12].

Let C and D be concepts, R be a role and a and b be individuals, a TBox T
is a finite set of concept inclusion axioms C v D, while an ABox A is a finite set
of concept membership axioms a : C, role membership axioms (a, b) : R, equality
axioms a = b and inequality axioms a 6= b. A knowledge base (KB) K = (T ,A)
consists of a TBox T and an ABox A.

A KB is usually assigned a semantics using interpretations of the form I =
(∆I , ·I), where ∆I is a non-empty domain and ·I is the interpretation function
that assigns an element in ∆I to each individual a, a subset of ∆I to each
concept C and a subset of ∆I×∆I to each role R. The semantics of DLs can be
given equivalently by transforming a DL knowledge base into a predicate logic
theory and then using the model-theoretic semantics of the resulting theory.

A query over a knowledge base is usually an axiom for which we want to test
the entailment from the knowledge base. The entailment test may be reduced
to checking the unsatisfiability of a concept in the knowledge base, i.e., the
emptiness of the concept.

Given a predicate logic formula F , a substitution θ is a set of pairs x/a where
x is a variable universally quantified in the outermost quantifier in F and a is an
individual. The application of θ to F , indicated by Fθ, is called an instantiation
of F and is obtained by replacing x with a in F and by removing x from the
external quantification for every pair x/a in θ.

DISPONTE applies the distribution semantics to probabilistic ontologies
[11]. In DISPONTE a probabilistic knowledge base K is a set of certain and
probabilistic axioms. Certain axioms take the form of regular DL axioms. Prob-
abilistic axioms take the form p ::V ar E, where p is a real number in [0, 1], V ar
can be empty or the symbol x and specifies the type of probability and E is a
DL axiom. In order to give a semantics to such probabilistic knowledge bases, we
consider their translation into predicate logic. The idea of DISPONTE is to asso-
ciate independent Boolean random variables to (instantiations of) the formulas
in predicate logic that are obtained from the translation of the axioms. If V ar is
empty, a single random variable is associated to the axiom E and p represents a
degree of belief in E (epistemic probability). If V ar = x, we associate a random



variable with every instantiation of E. In this case p indicates the probability
that a random individual from the subclass belongs to the superclass (statistical
probability). This type of probability is allowed only for subclass axioms.

A DISPONTE KB defines a distribution over DL KB called worlds. Each
world is obtained by including every formula from a certain axiom. For each
probabilistic axiom, we generate all the substitutions for the variables of the
equivalent predicate logic formula. For each instantiated formula, we decide
whether or not to include it in w. By multiplying the probability of the choices
made to obtain a world we can assign it a probability. The probability of a query
is then the sum of the probabilities of the worlds where the query holds true.

The system BUNDLE [9,10] computes the probability of a query w.r.t. ontolo-
gies that follow DISPONTE semantics by first computing all the explanations for
the query and then building a Binary Decision Diagram (BDD) that represents
them. A set of explanations for a query Q is a set of sets of triples (Fi, θj , k)
where Fi is the translation of the ith probabilistic axiom into a predicate logic
formula, θj is a substitution and k ∈ {0, 1}; k indicates if the formula is required
of forbidden for deriving the query. Explanations are found by using a modi-
fied version of Pellet that returns, besides the axioms used to derive the query,
also the individuals to which the axioms are applied. The set of explanations is
then translated into a BDD, a data structure that allows the computation of the
probability with a dynamic programming algorithm in polynomial time in the
size of the diagram.

3 EDGE

EDGE is based on the algorithm EMBLEM [3,2] developed for learning the
parameters for probabilistic logic programs under the distribution semantics.
EDGE adapts EMBLEM to the case of probabilistic DLs under the DISPONTE
semantics. EDGE takes as input a DL KB and a number of examples that
represent the queries. Tipically, the queries are concept assertions and are divided
into positive examples that represent information that we regard as true and
for which we would like to get high probability and negative examples that
represent information that we regard as false and for which we would like to get
low probability.

EDGE first computes, for each example, the BDD encoding its explanations
using BUNDLE. For negative examples, EDGE computes the explanations of
the query, builds the BDD and then negates it. For example, if the negative
example is a : C, EDGE executes the query a : C, finds the BDD and then
negates it.

Then EDGE enters the EM cycle, in which the steps of expectation and max-
imization are repeated until the log-likelihood (LL) of the examples reaches a
local maximum. At each iteration the LL of the example increases, i.e., the prob-
ability of positive examples increases and that of negative examples decreases.
The EM algorithm is guaranteed to find a local maximum, which however may
not be the global maximum.



EDGE’s main procedure consists of a cycle in which the procedures Ex-
pectation and Maximization are repeatedly called. Procedure Expectation
takes as input a list of BDDs, one for each example, and computes P (Xij = x/a)
for all variables Xij in the BDD built from explanations. Procedure Maximiza-
tion computes the parameters values for the next EM iteration by relative
frequency. Procedure Expectation returns the LL of the data that is used in
the stopping criterion: EDGE stops when the difference between the LL of the
current iteration and the one of the previous iteration drops below a threshold
ε or when this difference is below a fraction δ of the previous LL.

The details of the procedures can be found in [3].

4 Related Work

In [8] the authors used an extension of ALC, called crALC that adopts an
interpretation-based semantics. crALC allows statistical axioms of the form
P (C|D) = α, which means that for any element x in D, the probability that
it is in C given that is in D is α, and of the form P (R) = β, which means that
for each couple of elements x and y in D, the probability that x is linked to y by
the role R is β. Axioms of the form P (C|D) = α are equivalent to DISPONTE
axioms of the form α ::x C v D, while axioms of the form P (R) = β have no
equivalent in DISPONTE but can be introduced in principle. On the other hand,
crALC does not allow to express a degree of belief in axioms. A crALC KB K
can be represented as a directed acyclic graph G(K) in which a node represents
a concept or a role and the edges represent the relations between them.

The algorithm of [8] learns parameters and structure of crALC knowledge
bases. It starts from positive and negative examples for a single concept and
learns a probabilistic definition for the concept. For a set of candidate definitions,
their parameters are learned using an EM algorithm. Differently for us, the
expected counts are computed by resorting to inference in the graph, while we
exploit the BDD structures.

Another approach is presented in [13,7], where the authors use an algorithm,
called GoldMiner, that exploits Association Rules (AR) for building ontologies.
GoldMiner extracts information about individuals, named classes and roles using
SPARQL queries. Then, starting from this data, it builds two transaction tables:
one for individuals and one for couples of individuals. The first contains a row
for each individual and a column for all named classes and classes of the form
∃R.C for R a role and C a named class. The cells of the table contain 1 if
the individual belongs to the class of the column. The second table contains
a row for each couple of individuals and a column for each named role. The
cells contain 1 if the couple of individual belongs to the role in the column.
Finally, the APRIORI algorithm [1] is applied to each table in order to find
ARs. These association rules are implications of the form A ⇒ B where A and
B are conjunctions of columns. Each AR can thus be converted to a subclass
or subrole axiom A v B. So from the learned ARs a knowledge base can be
obtained. Moreover, each AR A⇒ B is associated with a confidence that can be



interpreted as the statistical probability of the axiom p ::x A v B. So GoldMiner
can be used to obtain a probabilistic knowledge base.

5 Experiments

EDGE has been tested over a real world dataset from the linked open data
cloud: educational.data.gov.uk. In order to build the ontology for which we
want to learn the parameters, we used GoldMiner. We ran GoldMiner using the
following parameters for the APRIORI algorithm: 0.1 as the minimum support
and 0.05 as the minimum confidence. The number of individuals extracted from
educational.data.gov.uk is 134149. The resulting ontology contains around
5500 axioms. Each axiom is obtained from an AR with a confidence smaller than
1 so we consider all of them as probabilistic.

Then we selected positive and negative examples by randomly choosing indi-
viduals from the extracted ones. For each individual a we identified three random
named classes: for the first two classes A and B we randomly chose a class to
which a explicitly belongs, for the third class C we randomly selected a class
to which a does not explicitly belong but there is at least one explanation for
the query a : C. Finally we added the axiom a : A to the ontology, a : B to
the set of positive examples and a : C to the set of negative examples. In the
training phase, we ran EDGE on the ontology obtained by GoldMiner where we
consider all the axioms as probabilistic. We randomly set the initial values of the
parameters. We used a 5-fold cross validation to test the system. EDGE took
about 65000 seconds in average for handling 5000 examples, most of which were
spent finding the explanations and building the BDDs, while the execution of
the EM iterations took only about 6 seconds. In the testing phase, we computed
the probability of the queries using BUNDLE. For a negative example of the
form a : C we compute the probability p of a : C and we assign probability 1−p
to the example.

We compared the results of EDGE with those obtained from an ontology in
which the parameters are the ARs’ confidences. Given the probability of the ex-
amples in the test set, we drew the Precision-Recall and the Receiver Operating
Characteristics curves and computed the Area Under the Curve (AUCPR and
AUCROC), a standard way of evaluating machine learning algorithms, following
[4,6]. Table 1 shows the AUCPR and AUCROC averaged over the five folds for
EDGE and the association rules (ARs) together with the standard deviation.
On these results we executed a two-tailed paired t-test and the resulting p-value
is 0.000305 for the AUCPR and 0.000449 for the AUCROC: for both areas, the
differences are statistically significant at the 5% level.

6 Conclusions

EDGE applies an EM algorithm for learning the parameters of probabilistic
knowledge bases under the DISPONTE semantics. Work is currently under
way for learning at the same time the structure and the parameters. EDGE



educational.data.gov.uk
Average Areas with Standard Deviation

EDGE ARs

AUCPR 0.9740± 0.011 0.8602± 0.024

AUCROC 0.9848± 0.005 0.9184± 0.016
Table 1. Results of the experiments in terms of AUCPR and AUCROC.

exploits the BDDs that are built during inference to efficiently compute the
expectations for hidden variables. EDGE is available for download from http:

//sites.unife.it/ml/edge together with the datasets used in the experiments.
The experiments over a real world dataset extracted from gov.uk show that
EDGE achieves larger areas both under the PR and the ROC curve with respect
to a simple algorithm based on association rules.
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