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Abstract. Finding explanations for queries to Description Logics (DL)
theories is a non-standard reasoning service originally defined for debug-
ging purposes but recently found useful for answering queries to proba-
bilistic theories. In the latter case, besides the axioms that are used to
entail the query, it is necessary to record also the individuals to which the
axioms are applied. We refer, in this case, to instantiated explanations.
The system BUNDLE computes the probability of queries to probabilis-
tic ALC knowledge bases by first finding instantiated explanations for
the query and then applying a dynamic programming algorithm. In order
to apply BUNDLE to more expressive DLs, such as SHOIN (D) that
is at the basis of OWL DL, instantiated explanations must be found. In
this paper, we discuss how we extended BUNDLE in order to compute
instantiated explanations for SHOIN (D).

1 Introduction

Description Logics (DLs) are at the basis of the Semantic Web and the study of
reasoning algorithms for DLs is a very active area of research. The problem of
finding explanations for queries has been the subject of various works [22,7,9,6].
An explanation for a query is a set of axioms that is sufficient for entailing
the query and that is minimal. Finding all explanations for a query is a non-
standard reasoning service that was originally devised for ontology debugging,
i.e., for helping the knowledge engineer in spotting modeling errors. However,
this reasoning service turned out to be useful also for computing the probability
of queries from probabilistic knowledge bases. In [3] we presented the algorithm
BUNDLE for “Binary decision diagrams for Uncertain reasoNing on Description
Logic thEories”, that performs inference from DL knowledge bases under the
probabilistic DISPONTE semantics. DISPONTE is based on the distribution
semantics for probabilistic logic programming [20] and minimally extends the
underlying DL language by annotating axioms with a probability and assuming
that each axiom is independent of the others. In [3] BUNDLE computes the
probability of queries by first finding all the explanations for the queries using



an underlying reasoner (Pellet [23] in particular) and then building Binary De-
cision Diagrams from which the probability is computed. In [17] we extended
DISPONTE by including a second type of probabilistic annotation that repre-
sents statistical information, while the previous type only represents epistemic
information. With these two types of annotations we are able to seamlessly rep-
resent assertional and terminological probabilistic knowledge, including degrees
of overlap between concepts. Statistical annotations require to consider the in-
dividuals to which the axioms are applied. Thus, in order to perform inference,
finding explanations is not enough: we need to know also the individuals involved
in the application of each axiom.

In [18] we presented a version of BUNDLE that is able to compute the prob-
abilities of queries from DISPONTE ALC knowledge bases. This required a
modification of the underlying DL resoner, Pellet, in order to find instantiated
explanations for the queries: sets of couples (axiom, substitution) where the
substitution replaces (some) of the universally quantified logical variables of the
axiom with individuals. This can be seen as a new non-standard reasoning ser-
vice that, to the best of our knowledge, has not been tackled before. This result
was achieved by modifying the rules that Pellet uses for updating the tracing
function during the expansion of its tableau.

In this paper, we present an extension of BUNDLE for computing instanti-
ated explanations for the expressive SHOIN (D) DL, that is at the basis of the
OWL DL language. This paves the way for answering queries to DISPONTE
OWL DL, thus allowing the introduction of uncertainty in the Semantic Web,
an important goal according to many authors [4,24].

To compute instantiated explanations from SHOIN (D), we will illustrate
how we modified the rules for updating the tracing function during the expansion
of the tableau. This allows to find a single instantiated explanation. In order to
find all of them, the hitting set algorithm of Pellet has been suitably adapted.

The paper is organized as follows. Section 2 briefly introduces the syntax of
SHOIN (D) and its translation into predicate logic. Section 3 defines the prob-
lem of finding instantiated explanations while Section 4 illustrates the motiva-
tions that led us to consider this problem. Section 5 describes how BUNDLE
finds instantiated explanations and, finally, Section 6 concludes the paper.

2 Description Logics

DLs are knowledge representation formalisms particularly useful for representing
ontologies and have been adopted as the basis of the Semantic Web [1,2]. In this
section, we recall the expressive description logic SHOIN (D) [12], which is the
basis of the web ontology language OWL DL.

DLs syntax is based on concepts and roles: a concept corresponds to a set
of individuals of the domain while a role corresponds to a set of couples of
individuals of the domain. Let A, R and I be sets of atomic concepts, roles and
individuals, respectively.
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A role is either an atomic role R ∈ R or the inverse R− of an atomic role
R ∈ R. We use R− to denote the set of all inverses of roles in R. An RBox R
consists of a finite set of transitivity axioms Trans(R), where R ∈ R, and role
inclusion axioms R v S, where R,S ∈ R ∪R−.

Concepts are defined by induction as follows. Each C ∈ A is a concept, ⊥
and > are concepts, and if a ∈ I, then {a} is a concept. If C, C1 and C2 are
concepts and R ∈ R ∪R−, then (C1 u C2), (C1 t C2), and ¬C are concepts, as
well as ∃R.C, ∀R.C, ≥ nR and ≤ nR for an integer n ≥ 0. A TBox T is a finite
set of concept inclusion axioms C v D, where C and D are concepts. We use
C ≡ D to abbreviate C v D and D v C. An ABox A is a finite set of concept
membership axioms a : C, role membership axioms (a, b) : R, equality axioms
a = b and inequality axioms a 6= b, where C is a concept, R ∈ R and a, b ∈ I.

A knowledge base (KB) K = (T ,R,A) consists of a TBox T , an RBox R
and an ABox A. A knowledge base K is usually assigned a semantics in terms of
set-theoretic interpretations and models of the form I = (∆I , ·I) where ∆I is a
non-empty domain and ·I is the interpretation function that assigns an element
in ∆I to each a ∈ I, a subset of ∆I to each C ∈ A and a subset of ∆I ×∆I to
each R ∈ R.

The semantics of DLs can be given equivalently by converting a KB into
a predicate logic theory and then using the model-theoretic semantics of the
resulting theory. A translation of SHOIN into First-Order Logic with Counting
Quantifiers is given in the following as an extension of the one given in [21]. We
assume basic knowledge of logic. The translation uses two functions πx and πy
that map concept expressions to logical formulas, where πx is given by

πx(A) = A(x) πx(¬C) = ¬πx(C)
πx({a}) = (x = a) πx(C uD) = πx(C) ∧ πx(D)

πx(C tD) = πx(C) ∨ πx(D) πx(∃R.C) = ∃y.R(x, y) ∧ πy(C)
πx(∃R−.C) = ∃y.R(y, x) ∧ πy(C) πx(∀R.C) = ∀y.R(x, y)→ πy(C)

πx(∀R−.C) = ∀y.R(y, x)→ πy(C) πx(≥ nR) = ∃≥ny.R(x, y)

πx(≥ nR−) = ∃≥ny.R(y, x) πx(≤ nR) = ∃≤ny.R(x, y)

πx(≤ nR−) = ∃≤ny.R(y, x)

and πy is obtained from πx by replacing x with y and vice-versa. Table 1 shows
the translation of each axiom of SHOIN knowledge bases into predicate logic.
SHOIN (D) adds to SHOIN datatype roles, i.e., roles that map an individ-

ual to an element of a datatype such as integers, floats, etc. Then new concept
definitions involving datatype roles are added that mirror those involving roles
introduced above. We also assume that we have predicates over the datatypes.

A query Q over a KB K is usually an axiom for which we want to test the
entailment from the knowledge base, written K |= Q. The entailment test may be
reduced to checking the unsatisfiability of a concept in the knowledge base, i.e.,
the emptiness of the concept. SHOIN (D) is decidable iff there are no number
restrictions on non-simple roles. A role is non-simple iff it is transitive or it has
transitive subroles.

Given a predicate logic formula F , a substitution θ is a set of pairs x/a,
where x is a variable universally quantified in the outermost quantifier in F and
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Axiom Translation

C v D ∀x.πx(C)→ πx(D)

R v S ∀x, y.R(x, y)→ S(x, y)

Trans(R) ∀x, y, z.R(x, y) ∧R(y, z)→ S(x, z)

a : C πa(C)

(a, b) : R R(a, b)

a = b a = b

a 6= b a 6= b

Table 1. Translation of SHOIN axioms into predicate logic.

a ∈ I. The application of θ to F , indicated by Fθ, is called an instantiation
of F and is obtained by replacing x with a in F and by removing x from the
external quantification for every pair x/a in θ. Formulas not containing variables
are called ground. A substitution θ is grounding for a formula F if Fθ is ground.

Example 1. The following KB is inspired by the ontology people+pets [13]:
∃hasAnimal.Pet v NatureLover
(kevin,fluffy) : hasAnimal (kevin, tom) : hasAnimal
fluffy : Cat tom : Cat Cat v Pet

It states that individuals that own an animal which is a pet are nature lovers and
that kevin owns the animals fluffy and tom. Moreover, fluffy and tom are cats
and cats are pets. The predicate logic formulas equivalent to the axioms are F1 =

∀x.∃y.hasAnimal(x, y) ∧ Pet(y) → NatureLover(x), F2 = hasAnimal(kevin,fluffy),

F3 = hasAnimal(kevin, tom), F4 = Cat(fluffy), F5 = Cat(tom) and F6 = ∀x.Cat(x)→
Pet(x). The query Q = kevin : NatureLover is entailed by the KB.

The Unique Name Assumption (UNA) [1] states that distinct individual
names denote distinct objects, i.e., that a 6= b with a, b ∈ I implies aI 6= bI .

3 Finding Instantiated Explanations

The problem of finding explanations for a query has been investigated by various
authors [22,7,9,6]. It was called axiom pinpointing in [22] and considered as a
non-standard reasoning service useful for debugging ontologies. In particular, in
[22] the authors define minimal axiom sets or MinAs for short.

Definition 1 (MinA). Let K be a knowledge base and Q an axiom that follows
from it, i.e., K |= Q. We call a set M ⊆ K a minimal axiom set or MinA for Q
in K if M |= Q and it is minimal w.r.t. set inclusion.

The problem of enumerating all MinAs is called min-a-enum. All-MinAs(Q,K)
is the set of all MinAs for Q in K.

Axiom pinpointing has been thoroughly discussed in [8,10,5,9] for the purpose
of tracing derivations and debugging ontologies. The techniques proposed in
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these papers have been integrated into the Pellet reasoner [23]. Pellet solves min-
a-enum by finding a single MinA using a tableau algorithm and then applying
the hitting set algorithm to find all the other MinAs.

BUNDLE is based on Pellet and uses it for solving the min-a-enum problem.
However, BUNDLE needs, besides All-MinAs(Q,K), also the individuals to
which the axiom was applied for each probabilistic axiom appearing in All-
MinAs(Q,K). We call this problem instantiated axiom pinpointing.

In instantiated axiom pinpointing we are interested in instantiated minimal
sets of axioms that entail an axiom. We call this type of explanations Inst-
MinA. An instantiated axiom set is a finite set F = {(F1, θ1), . . . , (Fn, θn)}
where F1, . . . , Fn are axioms and θ1, . . . , θn are substitutions. Given two instan-
tiated axiom sets F = {(F1, θ1), . . . , (Fn, θn)} and E = {(E1, δ1), . . . , (Em, δm)},
we say that F precedes E , written F � E , iff, for each (Fi, θi) ∈ F , there exists
an (Ej , δj) ∈ E and a substitution η such that Fjθj = Eiδiη.

Definition 2 (InstMinA). Let K be a knowledge base and Q an axiom that
follows from it, i.e., K |= Q. We call F = {(F1, θ1), . . . , (Fn, θn)} an instantiated
minimal axiom set or InstMinA for Q in K if {F1θ1, . . . , Fnθn} |= Q and F is
minimal w.r.t. precedence.

Minimality w.r.t. precedence means that axioms in a InstMinA are as instan-
tiated as possible. We call inst-min-a-enum the problem of enumerating all
InstMinAs. All-InstMinAs(Q,K) is the set of all InstMinAs for Q in K.

Example 2. The query Q = kevin : NatureLover of Example 1 has two Mi-
nAs, the first of which is: { hasAnimal(kevin,fluffy), Cat(fluffy), ∀x.Cat(x)→
Pet(x), ∀x. ∃y.hasAnimal(x, y) ∧ Pet(y) → NatureLover(x) } while the other
is: { hasAnimal(kevin, tom), Cat(tom), ∀x.Cat(x) → Pet(x),
∀x.∃y.hasAnimal(x, y)∧Pet(y)→ NatureLover(x) }, where axioms are repre-
sented as first order logic formulas.

The corresponding InstMinAs are { hasAnimal(kevin,fluffy), Cat(fluffy),
Cat(fluffy) → Pet(fluffy), hasAnimal(kevin, fluffy) ∧ Pet(fluffy) →
NatureLover(kevin) } and { hasAnimal(kevin, tom), Cat(tom), Cat(tom)→
Pet(tom), hasAnimal(kevin, tom) ∧ Pet(tom) → NatureLover(kevin) } re-
spectively, where instantiated axioms are represented directly in their first order
version.

4 Motivation

inst-min-a-enum is required to answer queries to knowledge bases following the
DISPONTE probabilistic semantics. DISPONTE applies the distribution seman-
tics [20] to probabilistic DL theories. In DISPONTE, a probabilistic knowledge
base K is a set of certain axioms or probabilistic axioms. Certain axioms take
the form of regular DL axioms. Probabilistic axioms take the form p ::Var E
where p is a real number in [0, 1], Var is a set of variables from {x, y, z} and E is
a DL axiom. Var is usually written as a string, so xy indicates the subset {x, y}.
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If Var is empty, then the :: symbol has no subscript. The variables in Var must
appear in the predicate logic version of E shown in Table 1.

In order to give a semantics to such probabilistic knowledge bases, we con-
sider their translation into predicate logic and we make the UNA. The idea of
DISPONTE [17,16] is to associate independent Boolean random variables to
(instantiations of) the formulas in predicate logic that are obtained from the
translation of the axioms. By assigning values to every random variable we de-
fine a world, the set of predicate logic formulas whose random variable takes
value 1. The purpose of the UNA is to ensure that the instantiations of formulas
are really distinct.

To obtain a world w, we include every formula from a certain axiom. For
each probabilistic axiom, we generate all the substitutions for the variables of
the equivalent predicate logic formula that are indicated in the subscript. The
variables are replaced with elements of I. For each instantiated formula, we
decide whether or not to include it in w. In this way we obtain a predicate logic
theory which can be assigned a model-theoretic semantics. A query is entailed
by a world if it is true in every model of the world. Here we assume that I is
countably infinite and, together with the UNA, this entails that the elements
of I are in bijection with the elements of the domain. These are called standard
names according to [11].

If Var is empty, the probability p can be interpreted as an epistemic prob-
ability, i.e., as the degree of our belief in axiom E, while if Var is equal to the
set of all allowed variables, p can be interpreted as a statistical probability, i.e.,
as information regarding random individuals from the domain.

For example, the statement that birds fly with 90% probability can be ex-
pressed by the epistemic axiom 0.9 :: Bird v Flies. Instead the statistical axiom
0.9 ::x Bird v Flies means that a random bird has 90% probability of flying.
Thus, 90% of birds fly. If we query the probability of a bird flying, both axioms
give the same result, 0.9. For two birds, the probability of both flying will be
0.9 · 0.9 = 0.81 with the second axiom and still 0.9 with the first one.

In order to compute the probability of queries, rather than generating all
possible worlds, we look for a covering set of explanations, i.e., the set of all
InstMinAs for the query. The query is true if all its instantiated axioms in
an InstMinA are chosen, according to the values of the random variables. To
compute the probability, the explanations must be made mutually exclusive, so
that the probability of each individual explanation is computed and summed
with the others. This is done by means of Binary Decision Diagrams [18].

Instantiated axiom pinpointing is also useful for a more fine-grained debug-
ging of the ontology: by highlighting the individuals to which the axiom is being
applied, it may point to parts of the ABox to be modified for repairing the KB.

5 An Algorithm for Computing Instantiated Explanations

Pellet, on which BUNDLE is based, finds explanations by using a tableau algo-
rithm [7]. A tableau is a graph where each node represents an individual a and
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is labeled with the set of concepts L(a) it belongs to. Each edge 〈a, b〉 in the
graph is labeled with the set of roles L(〈a, b〉) to which the couple (a, b) belongs.
Pellet repeatedly applies a set of consistency preserving tableau expansion rules
until a clash (i.e., a contradiction) is detected or a clash-free graph is found to
which no more rules are applicable. A clash is, for example, a concept C and
a node a where C and ¬C are present in the label of a, i.e. {C,¬C} ⊆ L(a).
Each expansion rule updates as well a tracing function τ , which associates sets
of axioms with labels of nodes and edges. It maps couples (concept, individual)
or (role, couple of individuals) to a fragment of the knowledge base K. τ is ini-
tialized as the empty set for all the elements of its domain except for τ(C, a)
and τ(R, 〈a, b〉) to which the values {a : C} and {(a, b) : R} are assigned if a : C
and (a, b) : R are in the ABox respectively. The output of the tableau algorithm
is a set S of axioms that is a fragment of K from which the query is entailed.

In BUNDLE we are interested in solving the inst-min-a-enum problem. In
order to find all the instantiated explanations, we modified the tableau expan-
sion rules of Pellet, reported in [7], to return a set of pairs (axiom, substitu-
tion) instead of a set of axioms. The tracing function τ now stores, together
with information regarding concepts and roles, also information concerning in-
dividuals involved in the expansion rules, which will be returned at the end
of the derivation process together with the axioms. Fig. 1 shows the tableau
expansion rules of BUNDLE for OWL DL, where (A v D, a) is the abbrevia-
tion of (A v D, {x/a}), (R v S, a) of (R v S, {x/a}), (R v S, a, b) of (R v
S, {x/a, y/b}), (Trans(R), a, b) of (Trans(R), {x/a, y/b}) and (Trans(R), a, b, c)
of (Trans(R), {x/a, y/b, z/c}), with a, b, c individuals and x, y, z variables (see
Table 1). In [18] we presented BUNDLE for the ALC DL and only the rules
→ unfold , → CE and → ∀ were modified with respect to Pellet’s ones.

Example 3. Let us consider the knowledge base presented in Example 1 and the
query Q = kevin : NatureLover.

After the initialization of the tableau, BUNDLE can apply the→ unfold rule
to the individuals tom or fluffy . Suppose it selects tom. The tracing function τ
becomes (in predicate logic)

τ(Pet, tom) = { Cat(tom), Cat(tom)→ Pet(tom) }
At this point BUNDLE applies the → CE rule to kevin, adding
¬(∃hasAnimal.Pet) t NatureLover = ∀hasAnimal.(¬Pet) t NatureLover to
L(kevin) with the following tracing function:

τ(∀hasAnimal.(¬Pet) tNatureLover, kevin) = {
∃y.hasAnimal(kevin, y) ∧ Pet(y)→ NatureLover(kevin) }

Then it applies the → t rule on kevin generating two tableaux. In the first one
it adds ∀hasAnimal.(¬Pet) to the label of kevin with the tracing function

τ(∀hasAnimal.(¬Pet), kevin) = {
∃y.hasAnimal(kevin, y) ∧ Pet(y)→ NatureLover(kevin)}

Now it can apply the → ∀ rule to kevin. In this step it can use either tom or
fluffy , supposing it selects tom the tracing function will be:

τ(¬(Pet), tom) = { hasAnimal(kevin, tom),
hasAnimal(kevin, tom) ∧ Pet(tom)→ NatureLover(kevin) }

At this point this first tableau contains a clash for the individual tom, thus
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→ unfold: if A ∈ L(a), A atomic and (A v D) ∈ K, then
if D /∈ L(a), then
L(a) = L(a) ∪ {D}
τ(D, a) := τ(A, a) ∪ {(A v D, a)}

→ CE: if (C v D) ∈ K, then
if (¬C tD) /∈ L(a), then
L(a) = L(a) ∪ {¬C tD}
τ(¬C tD, a) := {(C v D, a)}

→ u: if (C1 u C2) ∈ L(a), then
if {C1, C2} 6⊆ L(a), then
L(a) = L(a) ∪ {C1, C2}
τ(Ci, a) := τ((C1 u C2), a)

→ t: if (C1 t C2) ∈ L(a), then
if {C1, C2} ∩ L(a) = ∅, then

Generate graphs Gi := G for each i ∈ {1, 2}, L(a) = L(a) ∪ {Ci} for each i ∈ {1, 2}
τ(Ci, a) := τ((C1 t C2), a)

→ ∃: if ∃S.C ∈ L(a), then
if a has no S-neighbor b with C ∈ L(b), then

create new node b, L(b) = {C}, L(〈a, b〉) = {S},
τ(C, b) := τ((∃S.C), a), τ(S, 〈a, b〉) := τ((∃S.C), a)

→ ∀: if ∀(S1, C) ∈ L(a1), a1 is not indirectly blocked and there is an S1-neighbor b of a1, then
if C /∈ L(b), then L(b) = L(a) ∪ {C}
if there is a chain of individuals a2, . . . , an and roles S2, . . . , Sn such that⋃n

i=2
{(Trans(Si−1), ai, ai−1), (Si−1 v Si, ai)} ⊆ τ(∀S1.C, a1)

and ¬∃an+1 : {(Trans(Sn), an+1, an), (Sn v Sn+1, an+1)} ⊆ τ(∀S1.C, a1), then

τ(C, b) := τ(∀S1.C, a1) \
⋃n

i=2
{(Trans(Si−1), ai, ai−1), (Si−1 v Si, ai)}∪⋃n

i=2
{(Trans(Si−1), ai, ai−1, b), (Si−1 v Si, ai, b)} ∪ τ(S1, 〈a1, b〉)

else
τ(C, b) := τ(∀S1.C, a1) ∪ τ(S1, 〈a1, b〉)

→ ∀+: if ∀(S.C) ∈ L(a), a is not indirectly blocked
and there is an R-neighbor b of a, Trans(R) and R v S, then

if ∀R.C /∈ L(b), then L(b) = L(b) ∪ {∀R.C}
τ(∀R.C, b) := τ(∀S.C, a) ∪ τ(R, 〈a, b〉) ∪ {(Trans(R), a, b), (R v S, a)}

→≥: if (≥ nS) ∈ L(a), a is not blocked, then
if there are no n safe S-neighbors b1, ..., bn of a with bi 6= bj , then

create n new nodes b1, ..., bn; L(〈a, bi〉) = L(〈a, bi〉) ∪ {S}; ˙6=(bi, bj)
τ(S, 〈a, bi〉) := τ((≥ nS), a)
τ( ˙6=(bi, bj)) := τ((≥ nS), a)

→≤: if (≤ nS) ∈ L(a), a is not indirectly blocked
and there are m S-neighbors b1, ..., bm of a with m > n, then

For each possible pair bi, bj , 1 ≤ i, j ≤ m; i 6= j then
Generate a graph G′

τ(Merge(bi, bj)) := (τ((≤ nS), a) ∪ τ(S, 〈a, b1〉)... ∪ τ(S, 〈a, bm〉))
if bj is a nominal node, then Merge(bi, bj) in G′,
else if bi is a nominal node or ancestor of bj , then Merge(bj , bi)
else Merge(bi, bj) in G′

if bi is merged into bj , then for each concept Ci in L(bi),
τ(Ci, bj) := τ(Ci, bi) ∪ τ(Merge(bi, bj))
(similarly for roles merged, and correspondingly for concepts in bj if merged into bi)

→ O: if, {o} ∈ L(a) ∩ L(b) and not a ˙6=b, then
Merge(a, b)
τ(Merge(a, b)) := τ({o}, a) ∪ τ({o}, b)
For each concept Ci in L(a), τ(Ci, b) := τ(Ci, a) ∪ τ(Merge(a, b))
(similarly for roles merged, and correspondingly for concepts in L(b))

→ NN : if (≤ nS) ∈ L(a), a nominal node, b blockable S-predecessor of a
and there is no m s.t. 1 ≤ m ≤ n, (≤ mS) ∈ L(a)
and there exist m nominal S-neighbors c1, ..., cm of a s.t. ci ˙6=cj , 1 ≤ j ≤ m, then

generate new Gm for each m, 1 ≤ m ≤ n
and do the following in each Gm:
L(a) = L(a) ∪ {≤ mS}, τ((≤ mS), a) := τ((≤ nS), a) ∪ (τ(S, 〈b, a〉)
create b1, ..., bm; add bi ˙6=bj for 1 ≤ i ≤ j ≤ m. τ( ˙6=(bi, bj) := τ((≤ nS), a) ∪ τ(S, 〈b, a〉)
L(〈a, bi〉) = L(〈a, bi〉) ∪ {S}; L(bi) = L(bi) ∪ {{oi}};
τ(S, 〈a, bi〉) := τ((≤ nS), a) ∪ τ(S, 〈b, a〉); τ({oi}, bi) := τ((≤ nS), a) ∪ τ(S, 〈b, a〉)

Fig. 1. BUNDLE tableau expansion rules for OWL DL.

8



BUNDLE moves to the second tableau and tries to expand it. The second tableau
was found by applying the → CE rule that added NatureLover to the label of
kevin, so also the second tableau contains a clash. At this point, BUNDLE joins
the tracing functions of the two clashes to find the following InstMinA:
{hasAnimal(kevin, tom) ∧ Pet(tom)→ NatureLover(kevin),
hasAnimal(kevin, tom), Cat(tom), Cat(tom)→ Pet(tom) }.

For applying BUNDLE to SHOIN (D), we further modified the rules→ ∀+ and
→ ∀. For the rule → ∀+, we record in the explanation a transitivity axiom for
the role R in which only two individuals, those connected by the super role S,
are involved. For the rule → ∀ we make a distinction between the case in which
∀S1.C was added to L(a1) by a chain of applications of→ ∀+ or not. In the first
case, we fully instantiate the transitivity and subrole axioms. In the latter case,
we simply obtain τ(C, b) by combining the explanation of ∀S1.C(a1) with that
of (a1, b) : S1.

Example 4. Let us consider the query Q = eva : Person with the following
knowledge base:
Trans(friend) kevin : ∀friend .P erson (kevin, lara) : friend (lara, eva) : friend

BUNDLE first applies the → ∀+ rule to kevin, adding ∀friend .P erson to the
label of lara. In this case friend is considered as a subrole of itself. The tracing
function τ is updated as (in predicate logic):

τ(∀friend .P erson, lara) = { ∀y.friend(kevin, y)→ Person(y),
friend(kevin, lara), ∀z.friend(kevin, lara) ∧ friend(lara, z)→ friend(kevin, z)}

Note that the transitivity axiom is not fully instantiated, the variable z is still
present. Then BUNDLE applies the → ∀ rule to lara adding Person to eva.
The tracing function τ is modified as (in predicate logic):

τ(Person, eva) = { ∀y.friend(kevin, y)→ Person(y), friend(kevin, lara),
friend(lara, eva), friend(kevin, lara) ∧ friend(lara, eva)→ friend(kevin, eva)}

Here the transitivity axiom has become ground: all variables have been instan-
tiated. At this point the tableau contains a clash so the algorithm stops and
returns the explanation given by τ(Person, eva).

Example 5. Let us consider the knowledge base
kevin : ∀kin.Person (kevin, lara) : relative (lara, eva) : ancestor
(eva, ann) : ancestor Trans(ancestor) Trans(relative)
relative v kin ancestor v relative

The query Q = ann : Person has the explanation (in predicate logic):
τ(Person, ann) = { ∀y.kin(kevin, y)→ Person(y),
relative(kevin, lara), ancestor(lara, eva), ancestor(eva, ann),
relative(kevin, lara) ∧ relative(lara, ann)→ relative(kevin, ann),
ancestor(lara, eva) ∧ ancestor(eva, ann)→ ancestor(lara, ann),
relative(kevin, ann)→ kin(kevin, ann),
ancestor(lara, ann)→ relative(lara, ann) }

It is easy to see that the explanation entails the axiom represented by the argu-
ments of τ . In general, the following theorem holds.
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Theorem 1. Let Q be an axiom entailed by K and let S be the output of BUN-
DLE with the tableau expansion rules of Figure 1 with input Q and K. Then
S ∈ All-InstMinAs(Q,K).

Proof. The proof, whose full details are given in Theorem 5 of [15], proceeds by
induction on the number of rule applications following the proof of Theorem 2
of [7].

The complexity of BUNDLE is similar to the one of Pellet due to the fact that
only the → ∀ rule requires a non-constant number of additional operations.
BUNDLE has to find chains of individuals in the current explanation, thus the
complexity increment depends on the size of the current explanation.

The tableau algorithm returns a single InstMinA. To solve the problem All-
MinAs(Q,K), Pellet uses the hitting set algorithm [14]. It starts from a MinA
S and initializes a labeled tree called Hitting Set Tree (HST) with S as the label
of its root v [7]. Then it selects an arbitrary axiom F in S, it removes it from K,
generating a new knowledge base K′ = K − {F}, and tests the entailment of Q
w.r.t. K′. If Q is still entailed, we obtain a new explanation for Q. The algorithm
adds a new node w in the tree and a new edge 〈v, w〉, then it assigns this new
explanation to the label of w and the axiom F to the label of the edge. The
algorithm repeats this process until the entailment test returns negative: in that
case the current node becomes a leaf, the algorithm backtracks to a previous
node and repeats these operations until the HST is fully built. The distinct non-
leaf nodes of the tree collectively represent the set of all MinAs for the query
E.

As in Pellet, to compute All-InstMinAs(E,K) we use the hitting set algo-
rithm that calls BUNDLE’s tableau algorithm for computing a single InstMinA.
However in BUNDLE we need to eliminate instantiated axioms from the KB.
This cannot be done by modifying the KB, since it contains axioms in their gen-
eral form. Therefore we modified BUNDLE’s tableau algorithm to take as input
a set of banned instantiated axioms, BannedInstAxioms, as well. BUNDLE,
before applying a tableau rule, checks whether one of the instantiated axioms
to be added to τ is in BannedInstAxioms. If so, it does not apply the rule. In
this way we can simulate the removal of an instantiated axiom from the theory
and apply Pellet’s hitting set algorithm to find All-InstMinAs(E,K).

Example 6. Let us consider Example 3. Once an InstMinA is found, BUNDLE
applies the hitting set algorithm to it. Thus BUNDLE selects an axiom from
the InstMinA and removes it from the knowledge base. Suppose it selects the
axiom Cat(tom). At this point, a new run of the tableau algorithm w.r.t. the KB
without the axiom Cat(tom) can be executed. BUNDLE can apply the→ unfold
rule to the individual fluffy and following the same steps used in Example 3 it
finds a new InstMinA:
{hasAnimal(kevin,fluffy) ∧ Pet(fluffy)→ NatureLover(kevin),
hasAnimal(kevin,fluffy), Cat(fluffy), Cat(fluffy)→ Pet(fluffy) }

Now all the tableaux contain a clash so the hitting set algorithm adds a new node
to the HST and selects a new axiom from this second InstMinA to be removed

10



from the knowledge base. At this point, whatever axiom is removed from the
KB, the query Q = kevin : NatureLover will be no longer entailed w.r.t. the
KB. Once the HST is fully built, BUNDLE returns the set of all instantiated
explanations which is:

All-InstMinAs(kevin : NatureLover,K) = {
{ hasAnimal(kevin, tom) ∧ Pet(tom)→ NatureLover(kevin),
hasAnimal(kevin, tom), Cat(tom), Cat(tom)→ Pet(tom) },
{ hasAnimal(kevin,fluffy) ∧ Pet(fluffy)→ NatureLover(kevin),
hasAnimal(kevin,fluffy), Cat(fluffy), Cat(fluffy)→ Pet(fluffy) } }

Theorem 2. Let Q be an axiom entailed by K and let InstExpHST(Q,K) be
the set of instantiated explanations returned by BUNDLE’s hitting set algorithm.
Then InstExpHST(Q,K) = All-InstMinAs(Q,K).

Proof. See Theorem 6 in [15].

6 Conclusions

We have presented an approach for finding instantiated explanations for ex-
pressive DLs such as SHOIN (D). The approach is implemented in the sys-
tem BUNDLE for performing inference on probabilistic knowledge bases fol-
lowing the DISPONTE semantics. BUNDLE is available for download from
http://sites.unife.it/ml/bundle. BUNDLE is thus now able to compute
the probability of queries from DISPONTE OWL DL theories. We plan to per-
form an extensive test of BUNDLE performance on ontologies of various sizes.
Moreover, we plan to perform parameter learning of DISPONTE OWL DL KBs
by extending EDGE [19], an algorithm that learns DISPONTE ALC KBs’ pa-
rameters.
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