
Causal Inference in cplint

Fabrizio Riguzzia,∗, Giuseppe Cotab, Elena Bellodib, Riccardo Zeseb

aDipartimento di Matematica e Informatica – Università di Ferrara
Via Saragat 1, 44122, Ferrara, Italy

bDipartimento di Ingegneria – Università di Ferrara
Via Saragat 1, 44122, Ferrara, Italy

Abstract

cplint is a suite of programs for reasoning and learning with Probabilistic Logic
Programming languages that follow the distribution semantics. In this paper
we describe how we have extended cplint to perform causal reasoning. In
particular, we consider Pearl’s do calculus for models where all the variables are
measured. The two cplint modules for inference, PITA and MCINTYRE, have
been extended for computing the effect of actions/interventions on these models.
We also executed experiments comparing exact and approximate inference with
conditional and causal queries, showing that causal inference is often cheaper
than conditional inference.

Keywords: Probabilistic Logic Programming, Distribution Semantics, Logic
Programs with Annotated Disjunctions, ProbLog, Causal Inference, Statistical
Relational Artificial Intelligence

1. Introduction

Identifying cause-effect relationships among variables or events is one of the
main objectives of science. How to extract such relationships from data and how
to use them to make predictions have been fiercely debated. The connection
between correlation and causation is particularly subtle and has mislead many
authors. The famous sentence “correlation does not imply causation” is often
used in statistics to warn against confounding the two. A correlation between
two variables means that there is an association between them, but it does not
imply that one causes the other. As a matter of fact, it could happen that there
is a third factor that causes both producing the correlation.

Pearl in [1] showed that it is possible to represent causality by means of
graphical models. Bayesian networks, in particular, are directed acyclic graphs
that represent probabilistic dependencies between variables in a very intuitive

∗Corresponding author
Email addresses: fabrizio.riguzzi@unife.it (Fabrizio Riguzzi),

giuseppe.cota@unife.it (Giuseppe Cota), elena.bellodi@unife.it (Elena Bellodi),
riccardo.zese@unife.it (Riccardo Zese)

Preprint submitted to Elsevier September 29, 2017

way. In order to represent causality, Pearl [1] extended them into causal Bayesian
networks, i.e. Bayesian networks where an arc from a node A to a node B means
that A directly causally influences B. Computing the effect of actions can be
performed in causal Bayesian networks by removing the edges that point to the
nodes that represent the actions. The probability distribution of some vari-
ables E when performing action A, indicated as P (E|do(A)), denotes the effect
of actions and is at the basis of Pearl’s do calculus. This distribution can be
computed by probabilistic inference on the mutilated network.

Representing probabilistic information in Logic Programming has been pur-
sued by many authors. The distribution semantics [2] is one of the most widely
used semantics for Probabilistic Logic Programming (PLP). This semantics is at
the basis of many languages, such as Independent Choice Logic [3], PRISM [4],
Logic Programs with Annotated Disjunctions (LPADs) [5] and ProbLog [6].

CP-logic [7] is a PLP language for causal reasoning. CP-logic programs
(or CP-theories) are syntactically very similar to LPADs and they are given a
semantics based on probability trees that represent possible courses of events.
The authors proved that their semantics is suitable for representing causation
and the effects of causal laws. For legal CP-logic programs, the semantics of
LPADs and that of CP-logic coincide.

The authors in [7] also showed that the effect of actions in do calculus style
can be computed from CP-theories by modifying the theory itself and computing
the probability of the query from the modified theory. The modification involves
adding facts for positive actions or removing (instantiations) of rules for negative
actions.

In this paper we discuss how we implemented this process in practice in
cplint,1 a suite of programs for reasoning and learning in PLP. The two main
inference modules of cplint, PITA and MCINTYRE, have been suitably ex-
tended for performing the do calculus, thus computing the effects of actions.
PITA performs exact inference by knowledge compilation while MCINTYRE
performs approximate inference by sampling so their extensions allow to per-
form both exact and approximate causal inference.

Like [7], we assume that the causal structure of the model is fully known.
Pearl’s do calculus is more general, as it allows to compute the effect of actions
also on models with unknown variables. Exploiting the full power of the do
calculus in PLP is a very interesting direction for future work.

We present two domains to illustrate causal reasoning in PLP: the famous
Simpson’s paradox and a viral marketing problem. We have also conducted
experiments on the latter with an increasing number of members of the social
network and compared exact and approximate conditional inference with exact
and approximate causal inference. The results show that performing causal
inference is often much less expensive than conditional inference, as expected,
since actions remove dependencies among random variables.

The paper is organized as follows. Section 2 introduces preliminaries about

1http://sites.unife.it/ml/cplint

2

http://sites.unife.it/ml/cplint

distribution semantics, causal reasoning and PLP. Section 3 and Section 4 de-
scribe the modules PITA and MCINTYRE respectively, together with their
extension for causal reasoning; Section 5 shows some notable examples of causal
inference, namely the Simpson’s paradox and the viral marketing problem. Sec-
tion 6 illustrates related work. Section 7 reports on the experiments performed
and Section 8 concludes the paper.

2. Preliminaries

2.1. Probabilistic Logic Programming
The field of PLP has seen many different proposals for integrating logic

programming and probability theory. We here concentrate on the Distribution
Semantics (DS) [2] because it is one of the most widely used. The basic idea of
the DS is that a probabilistic logic program defines a probability distribution
over a set of normal logic programs (called worlds) that is extended to a joint
probability of programs and truth values of a ground query. The probability of
the query is then obtained from this joint distribution by marginalization.

We present the DS for LPADs for their general syntax. LPADs are sets of
disjunctive clauses in which each atom in the head is annotated with a proba-
bility.

Formally a Logic Program with Annotated Disjunctions (LPADs) [5] consists
of a finite set of annotated disjunctive clauses. An annotated disjunctive clause
Ci is of the form

hi1 : Πi1; . . . ;hini : Πini ← bi1, . . . , bimi .

In such a clause the semicolon stands for disjunction, hi1, . . . hini
are logical

atoms and bi1, . . . , bimi
are logical literals, Πi1, . . . ,Πini

are real numbers in
the interval [0, 1] such that

∑ni

k=1 Πik ≤ 1. If
∑ni

k=1 Πik < 1, the head of the
annotated disjunctive clause implicitly contains an extra atom null that does
not appear in the body of any clause and whose annotation is 1−

∑ni

k=1 Πik.

Example 1. The following LPAD T from [8] encodes a very simple model of
the development of an epidemic or a pandemic:

C1 = epidemic : 0.6; pandemic : 0.3← flu(X), cold.
C2 = cold : 0.7.
C3 = flu(david).
C4 = flu(robert).

An epidemic or a pandemic may arise if somebody has the flu and the climate
is cold. We are uncertain whether the climate is cold and we know for sure that
David and Robert have the flu.

We discuss the DS for the case in which the program does not contain function
symbols so that its Herbrand base is finite2. An atomic choice is a selection of

2For the distribution semantics for programs with function symbols see [2, 9, 10].

3

the k-th atom for a grounding Ciθj of a probabilistic clause Ci and is represented
by the triple (Ci, θj , k). A selection σ is a total set of atomic choices (one atomic
choice for every grounding of each probabilistic clause). A set of atomic choices
κ is consistent if (Ci, θj , k) ∈ κ, (Ci, θj ,m) ∈ κ implies k = m, i.e., only one
head is selected for a ground clause.

A composite choice κ is a consistent set of atomic choices. A selection σ
identifies a logic program wσ called a world. The probability of wσ is P (wσ) =∏

(Ci,θj ,k)∈σ Πik. Since the program does not contain function symbols, the set
of worlds is finite WT = {w1, . . . , wm} and P (w) is a distribution over worlds:∑
w∈WT

P (w) = 1.
A composite choice κ identifies a set ωκ that contains all the worlds associ-

ated with a selection that is a superset of κ: i.e., ωκ = {wσ|σ ∈ ST , σ ⊇ κ}.
We can define the conditional probability of a query Q given a world w as:

P (Q|w) = 1 if Q is true in w and 0 otherwise. The probability of the query can
then be obtained by marginalizing over the query

P (Q) =
∑
w

P (Q,w) =
∑
w

P (Q|w)P (w) =
∑
w|=Q

P (w) (1)

Example 2. For the LPAD T of Example 1, clause C1 has two groundings,
C1θ1 with θ1 = {X/david} and C1θ2 with θ2 = {X/robert}, while clause C2 has
a single grounding C2∅. T has 3× 3× 2 worlds, the query epidemic is true in 5
of them and its probability is P (epidemic) = 0.6 · 0.6 · 0.7 + 0.6 · 0.3 · 0.7 + 0.6 ·
0.1 · 0.7 + 0.3 · 0.6 · 0.7 + 0.1 · 0.6 · 0.7 = 0.588.

2.2. Causal Reasoning
The study of causation was connected to graphical models by Pearl [1],

even if diagrams were already used to represent causal models as early as the
1920’s [11] Graphical models are used to describe domains characterized by a
set of random variables. Bayesian networks, in particular, are directed acyclic
graphs where the variables are nodes and probabilistic dependences are repre-
sented as arcs: an arc from a node A to a node B means that A probabilistically
influences B. An example of a Bayesian network is shown in Figure 1: it de-
scribes the domain of a medical study investigating the effects of a new drug
on patients. The domain is described by three Boolean variables: Gender (F),
Drug (C) and Recovery (E). Gender indicates the gender of the patient, Drug
takes value 1 if the drug is administered to the patient under examination and
value 0 if a placebo is administered, and Recovery whether the patient recovered
from his illness. Gender influences Drug because the decision to administer or
not the drug is taken on the basis of the sex of the patient. Gender and Drug
influence Recovery because the outcome of the particular illness under exami-
nation depends on the sex of the patient and, hopefully, on the treatment.

Pearl [1] introduced causal Bayesian networks: these are Bayesian networks
where an arc from a nodeA to a nodeB means thatA directly causally influences
B. Causal Bayesian networks can be used to perform causal reasoning, such as
for example computing the effect of an action.

4

Gender F

Drug C

Recovery E

Figure 1: Bayesian network for a drug study domain.

An action or intervention in this context means setting a variable, say A,
to a particular value, say a. The Bayesian network of Figure 1 is causal as we
assume that the decision to administer or not the drug is taken on the basis of
the sex of the patient. Moreover, the treatment and sex cause the patient to
recover or not, as we assume that the illness depends on the gender.

In such a network one could for example ask what is the probability of
recovery if we make the action of administering the drug, in other words what
is the effect of the drug on recovery, the main aim of medical studies. This
corresponds to computing the probability of E = 1 when setting C to 1. For
answering such queries, Pearl shows that regular probabilistic reasoning cannot
be used. So in this case computing P (E = 1|C = 1) does not answer the
question of what is the effect of the drug.

Pearl introduces a different calculus, called do calculus, to infer the effect
of actions. In such a calculus, the action of setting a variable to a value is
distinguished from the observation of that value for the variable. Actions appear
inside a special do operator in the condition part of probabilistic queries. So
to compute the effect of the drug on recovery, the query to answer is P (E =
1|do(C = 1)).

The do calculus reduces a query involving actions to a regular probabilistic
query over a mutilated Bayesian network obtained by removing all incoming arcs
from variables involved in actions. Then the query with actions as observations
must be asked from the mutilated network. For example, to answer P (E =
1|do(C = 1)), the arc from Gender to Drug must be removed from the network
of Figure 1 obtaining the network of Figure 2. Then the query P (E = 1|C = 1)
must be asked from the mutilated network. Note that there is no need to specify
the conditional probability table (CPT) of the action variables (C in this case)
in the mutilated network as the action variables are observed so the CPT does
not influence the computation.

Equivalently, we can ask an unconditional query from the mutilated network
where the CPTs for the actions are set so that all the probability mass is as-
signed to the values set by the actions. For the example above, the conditional
probability table of C would be given by P (C = 1) = 1 and P (C = 0) = 0 and
the query would be P (E = 1).

It is very important not to confound P (E|do(C)) with P (E|C) because the

5

Gender F

Drug C

Recovery E

Figure 2: Mutilated version of the Bayesian network of Figure 1 for computing the effect of a
drug.

results may be very different, as shown by the famous Simpson’s paradox.

Example 3 (Simpson’s Paradox). From [1]:

Simpson’s paradox [...] refers to the phenomenon whereby an event
C increases the probability of E in a given population p and, at the
same time, decreases the probability of E in every subpopulation of
p. In other words, if F and ¬F are two complementary properties
describing two subpopulations, we might well encounter the inequal-
ities

P (E|C) > P (E|¬C)

P (E|C,F) < P (E|¬C,F)

P (E|C,¬F) < P (E|¬C,¬F)

[...] For example, if we associate C (connoting cause) with taking a
certain drug, E (connoting effect) with recovery, and F with being
a female, then [...] the drug seems to be harmful to both males and
females yet beneficial to the population as a whole.

Consider the situation exemplified by the following tables from [1]:

Combined E ¬E RecoveryRate
Drug(C) 20 20 40 50%
Nodrug(¬C) 16 24 40 40%

36 44 80

Females E ¬E RecoveryRate
Drug(C) 2 8 10 20%
Nodrug(¬C) 9 21 30 30%

11 29 40

Males E ¬E RecoveryRate
Drug(C) 18 12 30 60%
Nodrug(¬C) 7 3 10 70%

25 15 40

6

As you can see taking the drug seems to be beneficial overall even if it is not for
females and males.

The paradox derives because we must distinguish seeing from doing: we must
distinguish observing that the drug was administered from the intervention of
administering the drug. The conditioning operator in probability calculus stands
for “given that we see”, whereas the do operator means “given that we do”. So
the do operator must be used to infer the effect of actions. If the model of the
domain is the network from Figure 1, to compute P (E = 1|do(C = 1)) and
P (E = 1|do(C = 0)) we must compute P (E = 1|C = 1) and P (E = 1|C = 0)
from the network of Figure 2 by using classical Bayesian inference. For these
queries we get respectively 0.4 and 0.5, showing that the drug is not beneficial
in the whole population exactly as it is not in the two subpopulations.

Pearl’s do calculus also deals with causal Bayesian networks where some of the
variables are unknown, in the sense that we know that they exert an influence
but they are not measurable so it is not possible to quantify this influence,
i.e., we don’t know how many they are and the CPTs where they are involved,
we just know that some exist. When models contain such unknown variables,
computing the effect of actions is not always possible, because we can’t sum out
the contribution of such variables since we don’t know their number and CPTs.
The do calculus provides rules for determining whether it is possible to compute
the effect of an action even in the presence of unknown variables and to actually
perform the computation. In this paper we consider only the do calculus for
models with no unknown variables.

2.3. Causal Reasoning in Probabilistic Logic Programming
CP-logic [7] is a PLP language for causal reasoning whose semantics is based

on probability trees that represent possible courses of events. The authors
proved that their semantics is suitable for representing causation and the effects
of causal laws. In particular, they highlighted that the inductive definitions
of logic programming and the well-founded semantics of negation [12] produce
models respecting most properties of causation, provided the program respects
some weak constraints. The semantics of legal CP-logic programs coincides with
that of LPADs, but there are LPADs that are not legal CP-theories, i.e., they
cannot be assigned a causal semantics. However, these are corner cases in which
the stratification level of a couple of atoms in a world is switched in a different
world, so that it is not possible to establish a general stratification coherent
with temporal precedence in all worlds.

The authors in [7] showed that the effect of actions in do calculus style can
be computed from CP-theories when there are no unknown variables. In fact,
clauses in CP-theories represent causal laws so in order to know the result of
intervening on a single causal law, that law should be removed from the theory
(and possibly replaced by a different law). For example, to compute the effects
of an intervention that prevents a causal law C, that law must be removed from
the theory. In case the intervention establishes a new causal law C ′, that law
must be added to the theory. The modularity of CP-logic allows this.

7

Example 4. The computation of the effects of interventions is illustrated in [7]
with a medical example:

A tumor in a patient’s kidney might cause kidney failure, which
might cause the death of the patient; however, to make matters even
worse, the tumor can also metastasize to the brain, which might also,
independently, kill the patient. We can represent this as:

kidneyFailure : 0.1← kidneyTumor.
brainTumor : 0.1← kidneyTumor.
death : 0.5← brainTumor.
death : 0.9← kidneyFailure.

If we want to know what is the effect of putting the patient on a dialysis machine,
which allows him to survive kidney failure, we can remove the last law and use
the resulting theory for inference.

In this paper we start from the results in [7] and show how we modified inference
in cplint to allow the computation of the effect of actions of the form do(A)
and do(\+A) where A is a ground literal. do(A) means that the action A was
performed i.e., the action makes A true, whereas do(\+A) means that the action
makes the atom A false.

3. The PITA Module

PITA [13] computes the probability of a query from a probabilistic program
in the form of an LPAD by knowledge compilation [14]. PITA computes ex-
planations for the query and encodes them using Binary Decision Diagrams
(BDDs), a language for representing Boolean functions. The probability of the
query is given by the probability of the disjunction of the explanations, each
explanation being a conjunction of equations of the form V ar = value, where
V ar is a random variable associated with a ground clause and value is a possible
value (the index of one of the atoms in the head). BDDs encode the disjunction
of the explanations using Shannon expansion, which means that the disjunction
will be represented as a disjunction of mutually exclusive terms. This permits
the computation of the probability with a single visit of the BDD.

PITA computes BDDs for explanations by transforming an LPAD into a
normal program containing calls for manipulating BDDs. The idea is to add an
extra argument to each subgoal to store a BDD encoding the explanations for
the answers of the subgoal. The values of the extra argument of the subgoals
are combined using a set of library functions:

• init, end : initialize and terminate the data structures for manipulating
BDDs;

• zero(-D), one(-D): return BDD D representing the Boolean constant 0
and 1;

8

• and(+D1,+D2,-DO), or(+D1,+D2,-DO), not(+D1,-DO): Boolean oper-
ations between BDDs;

• get_var_n(+R,+S,+Probs,-Var): returns the multi-valued random vari-
able associated with rule R with grounding substitution S and list of
probabilities Probs;

• equality(+Var,+Value,-D): D is the BDD representing Var=Value, i.e.
that the multivalued random variable Var is assigned Value;

• ret_prob(+D,-P): returns the probability P of the BDD D.

These functions are implemented in C as an interface to the CUDD3 library for
manipulating BDDs. A BDD is represented in Prolog as an integer that is a
pointer in memory to the root node of the BDD.

The PITA transformation applies to atoms, literals, conjunctions of literals
and clauses. The transformation for an atom h and a variable D, PITA(h,D),
is h with the variable D added as the last argument. For the sake of simplicity,
we consider here only positive literals, but the transformation can be applied
also to negative literals (see [13]).

The transformation for a conjunction of literals b1, . . . , bm is
PITA(b1, . . . , bm, D) = one(DD0),
P ITA(b1, D1), and(DD0, D1, DD1), . . . ,
P ITA(bm, Dm), and(DDm−1, Dm, D).

The disjunctive clause Cr = h1 : Π1 ∨ . . . ∨ hn : Πn ← b1, . . . , bm. where the
parameters sum to 1, is transformed into the set of clauses PITA(Cr):

PITA(Cr, i) = PITA(hi, D)← PITA(b1, . . . , bm, DDm),
get_var_n(r, S, [Π1, . . . ,Πn], V ar),
equality(V ar, i,DD), and(DDm, DD,D).

for i = 1, . . . , n, where S is a list containing all the variables appearing in
Cr. If the parameters do not sum up to 1, the body is empty or the clause is
non-disjunctive (a single head with probability 1), the transformation can be
optimised.

We assume programs to be range restricted. A program is range restricted if
all the variables appearing in the head also appear in positive literals in the body.
In this case, when the goal get_var_n(r, S, [Π1, . . . ,Πn], V ar) is called, all the
variables of the original clause, listed in S, are instantiated so get_var_n/4
can associate a random variable with the instantiation of clause Cr.

The PITA transformation applied to clause C1 of Example 1 yields

3http://vlsi.colorado.edu/~fabio/CUDD/

9

http://vlsi.colorado.edu/~fabio/CUDD/

PITA(C1, 1) = epidemic(D)←
one(DD0),flu(X,D1), and(DD0, D1, DD1),
cold(D2), and(DD1, D2, DD2),
get_var_n(1, [X], [0.6, 0.3, 0.1], V ar),
equality(V ar, 1, DD), and(DD2, DD,D).

P ITA(C1, 2) = pandemic(D)←
one(DD0),flu(X,D1), and(DD0, D1, DD1),
cold(D2), and(DD1, D2, DD2),
get_var_n(1, [X], [0.6, 0.3, 0.1], V ar),
equality(V ar, 2, DD), and(DD2, DD,D).

PITA is available for XSB Prolog [15], YAP Prolog [16] and SWI-Prolog [17].
The XSB version, the initial one, uses tabling, a logic programming technique

that reduces computation time and ensures termination for a large class of
programs [15]. The idea of tabling is simple: keep a store of the subgoals
encountered in a derivation together with answers to these subgoals. If one
of the subgoals is encountered again, the answers are retrieved from the store
rather than recomputing them. Besides saving time, tabling ensures termination
for programs without function symbols under the well-founded semantics [12].

PITA also uses a feature of XSB tabling called answer subsumption [15] that,
when a new answer for a tabled subgoal is found, combines old answers with the
new one according to a partial order or lattice. This feature is used to combine
the BDDs that are built for different explanations of a goal, using or/3 as the
join operation of the lattice and zero/1 as the predicate returning the bottom
element of the lattice. For example, a unary predicate p/1 must be declared as
tabled by means of the declaration table p(_,or/3-zero/1). If an answer p(a, d1)
was found and a new answer p(a, d2) is derived, the answer p(a, d1) is replaced
by p(a, d3), where d3 is obtained by calling or(d1, d2, d3).

To compute the probability of a ground atom A, PITA uses predicate prob/2
whose definition is

prob(A,Prob)←
add_bdd_arg(A,D,A1),
call(A1),
ret_prob(D,Prob).

where add_bdd_arg(A,D,A1) performs the PITA transformation PITA(A,D)
for a literal A and a variable D, and A1 contains the transformed literal. Since
YAP and SWI-Prolog do not have answer subsumption in their tabling imple-
mentation, the collection of the various explanations for the goal is performed
explicitly with this definition of prob/2:

prob(A,Prob)←
add_bdd_arg(A,D,A1),
findall(D,A1, L),
zero(Zero),
foldl(or, L, Zero,DD),
ret_prob(DD,Prob).

where foldl/4 implements the higher order functional programming fold func-
tion and is available in the apply library of YAP and SWI-Prolog.

10

3.1. Conditional Exact Inference
To compute the probability of a conjunction of ground goals G given another

conjunction of ground goals E, two clauses are added to the knowledge base:

$goal(D)← PITA(G,D).

$ev(D)← PITA(E,D).

and the queries $goal(DG) and $ev(DE) are asked. DG will contain the BDD
representing the explanations for the goal and DE the BDD representing the
explanations for the evidence. Then the conjunction ofDG andDE is computed
obtainingDGE. The probability to be returned is the fraction of the probability
of DGE over the probability of DE, as shown in Algorithm 1.

Algorithm 1 Algorithm for computing the conditional probabilities.
1: function prob(T,G,E) . Program T , goal G, evidence E
2: Add $goal(D)← PITA(G,D). to T
3: Add $ev(D)← PITA(E,D). to T
4: Ask the queries $goal(DG) and $ev(DE)
5: DGE ← bdd_and(DG,DE)
6: PGE ← ret_prob(DGE)
7: PE ← ret_prob(DE)
8: return PGE/PE
9: end function

3.2. Causal Exact Inference
When performing causal inference, evidence E may contain ground literals

of the form do(A), meaning that ground literal A is an action rather than an
observation.

In this case, evidence E is partitioned into two conjunctions, EO containing
only the observation atoms and EA containing all the literals A for which E
contains do(A). Let remove_do be the function taking as input a conjunction
of do literals and returning remove_do(EA) = {A|do(A) ∈ EA}.

The knowledge base is extended with

$goal(D)← PITA(G,D).

as for non causal inference, plus

$ev(D)← PITA(EO,D).

Then Algorithm 2 is used to obtain a new program on which conditional in-
ference as in PITA is performed. The algorithm considers every action of the
form do(A) ∈ EA with A = p(t1, . . . , tn) or A = \+p(t1, . . . , tn) and, for each

11

clause with p(u1, . . . , un, D) in the head, it adds to the body the conjunction of
constraints dif (u1, t1), . . . , dif (un, tn). Then the clause

p(t1, . . . , tn, D)← one(D).

is added to the program for every action of the form do(p(t1, . . . , tn)) (positive
actions).

dif /2 is a coroutine predicate that expresses disequality of terms. The actual
test is delayed until the terms are sufficiently instantiated to be found different,
or have become identical. The predicate is available in most Prolog systems and
is usually implemented by means of attributed variables [18].

By using dif /2, the body of the clause fails as soon as a disequality is vi-
olated. If we had used the disunification predicate \=/2, we should have in-
serted the disequality constraints at the end of the body, just before the call
to get_var_n/4, because at the beginning of the body some variables may not
be instantiated. This would have resulted in a waste of computation, as failure
would be obtained only after having resolved all the literals in the body. With
dif /2 failure may be obtained earlier.

The result is correct as shown by Theorem 1.

Algorithm 2 Algorithm for preparing the knowledge base for exact causal
inference.
1: function PreparePITAKB(T,EA) . Program T , set of literals

appearing as do actions in the evidence EA
2: for all do(A) ∈ EA with A = p(t1, . . . , tn) or A = \+p(t1, . . . , tn) do
3: for all clauses C = p(u1, . . . , un, D)← B do
4: Remove C from T
5: Add p(u1, . . . , un, D)← dif (u1, t1), . . . , dif (un, tn), B to T
6: end for
7: end for
8: for all do(A) atom in EA with A = p(t1, . . . , tn) do
9: Add p(t1, . . . , tn, D)← one(D). to T

10: end for
11: return T
12: end function

Theorem 1. Given a a goal G and an evidence E, the probability for G to be
true given that E holds P (G|E) on program T has the same value as

prob(PreparePITAKB(T,EA), G,EO).

Proof 1. By including the dif /2 constraints in the body, we effectively make
sure that, when evaluating the body of the clauses (causal laws), all groundings
of the clauses whose head matches with one of the action atoms produce failure,
resulting in the same effect as removing the ground causal law from the theory.

12

The addition of clauses p(t1, . . . , tn, D)← one(D). for every positive action
do(p(t1, . . . , tn)) then ensures that p(t1, . . . , tn) is forced to true, and the absence
of any clause for p(t1, . . . , tn) for negative actions do(\+p(t1, . . . , tn)) ensures
that p(t1, . . . , tn) is forced to false.

In this way we adopt the strategy of [7] for representing interventions in
CP-logic.

4. The MCINTYRE Module

MCINTYRE [8] performs approximate inference by sampling. It first trans-
forms the program and then queries the transformed program. The disjunctive
clause Ci = hi1 : Πi1 ∨ . . . ∨ hin : Πini

← bi1, . . . , bimi
. where the parameters

sum to 1, is transformed into the set of clauses MC(Ci):
MC(Ci, 1) = hi1 ← bi1, . . . , bimi

,
sample_head(ParList, i, S,NH), NH = 1.

. . .
MC(Ci, ni) = hini ← bi1, . . . , bimi ,

sample_head(ParList, i, S,NH), NH = ni.
where S is a list containing each variable appearing in Ci and ParList is
[Πi1, . . . ,Πini

]. If the parameters do not sum up to 1, the last clause (the
one for null) is omitted. Basically, we create a clause for each head and we
sample a head index at the end of the body with sample_head/4. If this index
coincides with the head index, the derivation succeeds, otherwise it fails. Thus
failure can occur either because one of the body literals fails or because the
current clause is not part of the sample.

For example, clause C1 of Example 1 becomes
MC(C1, 1) = epidemic← flu(X), cold,

sample_head([0.6, 0.3, 0.1], 1, [X], NH), NH = 1.
MC(C1, 2) = pandemic← flu(X), cold,

sample_head([0.6, 0.3, 0.1], 1, [X], NH), NH = 2.
The predicate sample_head/4 samples an index from the head of a clause and
uses the built-in Prolog predicates recorded/3 and recorda/3 for respectively
retrieving or adding an entry to the internal database. Since sample_head/4
is at the end of the body and since we assume the program to be range re-
stricted, at that point all the variables of the clause have been grounded. If
the rule instantiation had already been sampled, sample_head/4 retrieves the
head index with recorded/3, otherwise it samples a head index with sample/2:
sample_head(_ParList, R, V C,NH)←
recorded(exp, (R, V C,N),_), !, NH = N.

sample_head(ParList, R, V C,NH)←
sample(ParList,NH),
recorda(exp, (R, V C,NH),_).

Tabling can be effectively used to speed up the computation. To sample a truth
value for a ground atom Goal from the program we use the following predicate

13

sample(Goal)←
abolish_all_tables,
eraseall(exp),
call(Goal).

To compute the probability of a query, a number N of samples is taken and
the probability is given by S/N where S is the number of times that sample/1
succeeds.

4.1. Conditional Approximate Inference
Similarly to PITA, to compute the probability of a conjunction of ground

goals G given another conjunction of ground goals E, two clauses are added to
the knowledge base:

$goal← G.

$ev ← E.

Conditional inference in MCINTYRE can be performed either by rejection sam-
pling or by Metropolis-Hastings Markov Chain Monte Carlo (MCMC) [19]. In
rejection sampling [20], you take a sample by first querying the evidence (with
sample($ev)) and, if the query is successful, query the goal in the same sample
(with sample($goal)), otherwise the sample is discarded.

In Metropolis-Hastings MCMC [21], a Markov chain is built by taking an
initial sample and by generating successor samples. A sample corresponds to a
composite choice, which in turn corresponds to a set of worlds (see Subsection
2.1). The initial sample κ0 is built by randomly sampling choices so that the
evidence is true. A successor sample κ is obtained by deleting a fixed number
of sampled probabilistic choices, i.e. κ0 ⊃ κ. Then the evidence is queried by
taking a sample κ′ starting with the undeleted choices with κ ⊂ κ′. If the query
succeeds, the goal is queried by taking a sample κ′′ with κ′ ⊂ κ′′, otherwise κ′ is
discarded. The sample is accepted with a probability of min{1, |κ||κ′′|} where |κ|
is the number of choices (i.e. atomic choices) sampled in the previous sample
and |κ′′| is the number of choices sampled in the current sample. Then the
number of successes of the query is increased by 1 if the query succeeded in the
last accepted sample. The final probability is given by the number of successes
over the number of samples.

4.2. Causal Approximate Inference
As for PITA, the evidence E is partitioned into the conjunctions EO of ob-

servation atoms and EA of action atoms. Then the knowledge base is extended
with

$goal← G.

as for non causal inference, plus

$ev ← EO.

Then Algorithm 3, MCINTYRE’s version of Algorithm 2, is used to preprocess
the program before using MCINTYRE algorithms for conditional inference. You

14

can notice that in Alg. 3 the variable D is missing (see predicates in Alg. 2),
this is because variable D in exact inference is used to contain the BDD, but
in approximate inference we just use sampling without building any BDDs. It

Algorithm 3 Algorithm for preparing the knowledge base for approximate
causal inference.
1: procedure PrepareMCKB(T,EA) . Program T , set of literals

appearing as do actions in the evidence EA
2: for all do(A) ∈ EA with A = p(t1, . . . , tn) or A = \+p(t1, . . . , tn) do
3: for all clauses C = p(u1, . . . , un)← B do
4: Remove C from T
5: Add p(u1, . . . , un)← dif (u1, t1), . . . , dif (un, tn), B to T
6: end for
7: end for
8: for all do(A) atom in EA with A = p(t1, . . . , tn) do
9: Add A to T

10: end for
11: end procedure

is easy to see that Theorem 1 holds also for MCINTYRE. Figure 3 shows the
architecture of the cplint system with their module and algorithms used for
causal inference.

5. Notable Examples

In this section we illustrate the implementation in cplint of two famous
problems: the Simpson’s paradox and the viral marketing problem.

5.1. Simpson’s Paradox
The medicine study of Example 3 can be represented with the program of

Figure 44. Here, :- action drug/0. means that drug/0 is a predicate that
can be used to specify actions. We need the :- action p/n directive because
the predicate p should be declared as dynamic in order to perform retract/1
(execution of line 4 in Algorithm 2). In PITA the directive :- action p/n
makes the predicate p/n+2 dynamic. In MCINTYRE, instead, it has the effect
to make p/n dynamic.

We query the conditional probabilities of recovery given treatment on the
whole population and on the two subpopulations with:

?- prob(recovery,drug,P).
?- prob(recovery,\+ drug,P).
?- prob(recovery,(drug,female),P).
?- prob(recovery,(\+drug,female),P).

4Also available at http://cplint.lamping.unife.it/example/inference/simpson.swinb.

15

http://cplint.lamping.unife.it/example/inference/simpson.swinb

SWI-Prolog

cplint

PITA
inference

Algorithm 2

MCINTYRE
inference

Algorithm 3

LPAD
program

PITA
module

MCINTYRE
module

modified
LPAD

modified
LPAD

Figure 3: Architecture of cplint for causal inference.

?- prob(recovery,(drug,\+ female),P).
?- prob(recovery,(\+ drug,\+ female),P).

The results of these queries are those in the tables of Example 3.
If instead we want to know the probability of recovery given the action

treatment (taking a drug), we must ask

?- prob(recovery,do(drug),P).
?- prob(recovery,do(\+ drug),P).
?- prob(recovery,(do(drug),female),P).
?- prob(recovery,(do(\+drug),female),P).
?- prob(recovery,(do(drug),\+ female),P).
?- prob(recovery,(do(\+ drug),\+ female),P).

The results of the last four queries are the same as the last four conditional
queries, so the probability of recovery in the two subpopulations is the same as
that for the case of seeing rather than doing, as the observation of sex makes
the arc from sex to drug irrelevant.

The results of the first two do queries instead differ from the conditional ones:
they are respectively 0.4 and 0.5, showing that the drug is not beneficial and
that the probability of recovery on the whole population is now in accordance
with that in the subpopulations, in particular it is the weighted average of the
probability of recovery in the subpopulations.

16

5.2. Viral Marketing
Let us now consider a viral marketing scenario inspired by [22]. A firm is

interested in marketing a new product to its customers. These are connected
in a social network that is known to the firm: the network represents the trust
relationships between customers. The firm has decided to adopt a marketing
strategy that involves giving the product for free to a number of its customers,
in the hope that these influence the other customers and entice them to buy the
product. The firm wants to choose the customers to which marketing is applied
so that its return is maximised. This involves computing the probability that
the non-marketed customers will acquire the product given the action to the
marketed customers.

We can model this domain with an LPAD where the predicate trust/2
encodes the links between customers in the social network and the predicate
has/1 is true for customers that possess the product, either received as a gift
or bought. Predicate trust/2 is defined by a number of certain facts, while
predicate has/1 is defined by two rules, one expressing the prior probability of
a customer to buy the product and one expressing the fact that if a trusted
customer has the product, then there is a certain probability that the trusting
customer buys the product. The complete LPAD is shown in Figure 55. The
social network encoded by the program is represented in Figure 6. If the firm
wants to estimate the effect of giving the product for free to customer 3 on the
probability of customer 2 buying the product, the query to ask is

?- prob(has(2),do(has(3)),P).

This query on the program above returns 0.136. If instead we query

?- prob(has(2),has(3),P).

we get 0.407, showing that not distinguishing seeing from doing leads to an
overly optimistic estimate.

6. Related Work

P-log [23] is a probabilistic logic programming language that is equipped
with a system capable of handling causal reasoning. Differently from LPADs,
the semantics of P-log programs is based on Answer Set Programming (ASP)
and the possible worlds are the models of the program interpreted as an ASP
program. As such, multiple worlds are generated not only because of probabilis-
tic constructs but also because of logical constructs, negation in particular. The
viral marketing program of Section 5.2 can be encoded in P-log as in Figure 7.

The P-log system performs reasoning on such program by computing the
whole set of possible worlds using an ASP reasoner. This means enumerating
all possible worlds, which can be very expensive. For example, the program

5Also available at http://cplint.lamping.unife.it/example/inference/viral.swinb.

17

http://cplint.lamping.unife.it/example/inference/viral.swinb

above has 4 + 4 ∗ 4 = 20 Boolean random variables generating 220 possible
worlds, making the computation of the example queries of Section 5.2 much
more expensive than with PITA: P-log was stopped before the end after several
minutes of computation, while PITA returns the results almost instantaneously
(less than one second) on the same machine. By comparison, P-log achieves a
similar running time only when the program above is restricted to three nodes,
for a total of 3 + 3 ∗ 3 = 12 Boolean random variables and 212 = 4096 worlds.
These results indicate that P-log is more suited for programs mixing probabilis-
tic and advanced non-monotonic constructs. If these features are not needed,
cplint can achieve better results.

Some languages, such as ICL [9] and ProbLog [24], only allow facts as prob-
abilistic clauses. This does not limit the expressiveness, as it is possible to
transform an LPAD into an ICL or ProbLog program. For example, the viral
marketing program translated into ProbLog is shown in Figure 8.

Considering ProbLog as an example, if an action involves a predicate de-
fined only by probabilistic facts, causal inference can be performed by con-
ditional inference. Since probabilistic facts have no parents, in the program
above P (has(2)|do(apriori(3))) is equal to P (has(2)|apriori(3)) and, at the
same time, P (has(2)|do(\+apriori(3))) is equal to P (has(2)|\+apriori(3)). On
the other hand, if actions involve predicates defined by rules, as for example in
P (has(2)|do(has(3))), the previous simple approach does not apply. In fact,
for the action do(A), one should look for all groundings of all probabilistic
facts on which A depends and include them in the evidence. This requires a
partial evaluation of the program. For the example above one could compute
P (has(2)|do(has(3))) by computing P (has(2)|apriori(3), viral(3, 1), viral(3, 2))
but in general the partial evaluation may be costly.

Anyway, in case a program can be rewritten by having all predicates for
actions defined by facts only, then causal inference can be performed by condi-
tional inference or unconditional inference on simple modifications of the pro-
gram. This is the approach taken for example in [9], which describes a scenario
where there is a robot and a key, the robot can pick up or put down the key
and move to different locations6. In this example actions are defined only by
(certain) facts so their effects can be computed by adding or removing the facts
encoding the actions.

The authors of [25] proposed an approach to perform the full do calculus on
propositional causal models using Answer Set Programming. Moreover, they
present an algorithm for inducing models from data. Our approach differs from
this because we consider inference for relational causal models, albeit in a re-
stricted case. Therefore our causal random variables can be parameterized by
logical variables, as has(P) in the viral marketing example: we have a differ-
ent causal Boolean variable has(p) for each person p and the rules defining the
predicate has/2 serve as a template for building a complex propositional model

6Available also in ProbLog at https://dtai.cs.kuleuven.be/problog/tutorial/various/
14_robot_key.html.

18

https://dtai.cs.kuleuven.be/problog/tutorial/various/14_robot_key.html
https://dtai.cs.kuleuven.be/problog/tutorial/various/14_robot_key.html

of the dependence of has(p) from its causes.

7. Experiments

In this section we aim to evaluate the performance of causal reasoning with
cplint while comparing exact inference, performed with PITA, with approxi-
mate inference, performed with Metropolis-Hastings of MCINTYRE. Given the
different focus of P-log, a comparison with this system would be unfair. There-
fore we compare the performance of causal reasoning in cplint with regular
probabilistic reasoning. All the experiments here presented were executed on a
Linux machine equipped with a Intel Xeon E5-2630 v3 @ 2.40 GHz CPU with
8 GB of main memory.

In particular, we considered the viral marketing domain. We generated
random social networks of increasing size and we evaluated random probabilistic
and causal queries with an increasing number of evidence literals. The random
social networks were generated as scale-free graphs according to the Barabasi-
Albert model [26]. We used the sample_pa7 function of the igraph R library to
generate the graphs with parameter m set to 2 (the number of edges to be added
at each time step is 2). We considered a number of nodes from 10 to 100 in
steps of 10 and, for each number of nodes, we generated 10 graphs (for a total
of 100 different generated graphs). For each number of nodes, we generated
conjunctions of literals of the form has(n) where n is a node sampled uniformly
at random from the set of nodes. For each number of literals from 2 to 8 in
steps of 2 we generated 10 random conjunctions with that number of literals.
For each conjunction Cl with l literals, we sampled uniformly a node m and we
prepared the queries Pl = P (has(m)|Cl) and Ql = P (has(m)|do(Cl)), where
do(Cl) = {do(A)|A ∈ Cl}.

Then we posed the queries Pl and Ql to each of the 10 graphs for each
number of nodes and we measured the execution time. The computed time
was averaged over the 10 graphs with the same number of nodes and the 10
conjunctions with the same number of literals. Hence we have 100 queries for
each number of nodes. We set a timeout of 600 seconds for each query and we
set to 1000 the number of samples for MCINTYRE.

The average runtime for conditional and causal queries are then plotted in
Figures 9-12 as a function of the number of nodes. Tables 1-4 show the average
timings with their 95% confidence intervals.

In particular, Figure 10 shows that with 4 evidence literals and a graph
size larger than 60 nodes at least one conditional query with exact inference
has encountered the timeout. Whereas causal queries (both with exact and
approximate inference) and conditional queries with approximate inference are
still feasible. Figures 11 and 12 show that at least one conditional query with
exact inference has encountered the timeout for graphs with more than 10 nodes
and queries with 6 evidence literals or more. In all the figures we can see that the

7http://igraph.org/r/doc/sample_pa.html

19

http://igraph.org/r/doc/sample_pa.html

running time of conditional inference increases with the size of the graphs, while
the runtime of causal inference is roughly constant. In these experiments the
average running time for causal approximate inference is below 130 milliseconds
for every graph size, whereas causal exact inference is surprisingly faster than
the approximate one and the average running time is below 4 milliseconds for
every graph size. The causal exact inference is faster than the approximate one
because, in our example, there is a small number of explanations for each causal
query, therefore it takes less time to compute all the explanations than it does
to sample the probabilistic logic program 1000 times. Table 5 reports the mean
squared error of approximate causal inference (caus mcint). We can notice that
the errors are less than 4·10−3, proving that the proposed approximate approach
gives results close enough to the exact ones.

Inference
method Size of the dataset

10 20 30 40 50
cond exact 0.32± 0.09 0.89± 0.63 3.01± 1.59 2.73± 1.40 2.19± 1.52

caus exact 3.15± 0.55 2.92± 0.05 2.97± 0.05 2.98± 0.07 2.93± 0.06

cond mcint 168.62±8.04 185.28±6.15 197.05±8.32 201.6± 5.91 204.22±6.77
caus mcint 46.11± 3.19 57.42± 2.5 64.94± 4.08 73.96± 4.2 63.57± 3.44

Inference
method Size of the dataset

60 70 80 90 100
cond exact 11.41± 4.96 13.91± 7.31 13.91± 5.65 20.24± 8.34 37.29±28.30
caus exact 3.03± 0.08 3.01± 0.10 3.00± 0.06 2.98± 0.09 3.36± 0.46

cond mcint 225.34±8.68 227.66±8.91
232.13±
10.47

237.46±9.24 252.91±12.9

caus mcint 74.27± 4.36 78.98± 6.6 77.81± 5.32 77.06± 6.77 81.26± 7.9

Table 1: Execution time (in milliseconds) and 95% confidence intervals for conditional and
causal queries with 2 evidence literals. The size of the datasets is expressed in number of
nodes of the graph.

8. Conclusions

While performing causal reasoning in PLP has been discussed before, no
existing system allows to perform causal reasoning in an easy, user-friendly and
fast way. This paper discusses how we have implemented causal reasoning in
the cplint system, thus providing a practical point of view on causal inference.
Causal queries on models with no unknown variables can now be answered with
exact and approximate inference by exploiting the PITA and MCINTYRE mod-
ules respectively. We conducted experiments on the viral marketing problem
with random social networks of increasing size. We compared the performance
of causal reasoning in cplint with regular probabilistic reasoning. The results
show that the modification of the inference algorithms do not impact on the
execution time and that causal reasoning is in effect cheaper than conditional
inference, as expected, thus showing that causal inference is suitable for real life

20

Inference
method Size of the dataset

10 20 30 40 50

cond exact 4.43± 1.27 66.98±29.64
811.73±
446.72

936.18±
626.14

854.23±
682.3

caus exact 2.84± 0.07 2.95± 0.05 2.95± 0.07 3.04± 0.06 2.9± 0.06

cond mcint 236.18±8.89
289.33±
11.77

350.97±
20.46

381.16±
25.24

364.11±
21.96

caus mcint 41.91± 3.25 56.88± 4.14 65.93± 4.48 79.38± 4.48 63.48± 3.38

Inference
method Size of the dataset

60 70 80 90 100

cond exact 2372.11±
1291.21

– – – –

caus exact 3.04± 0.08 3.06± 0.08 3.03± 0.07 3.07± 0.06 3.37± 0.38

cond mcint 438.48±
36.96

453.89±
34.03

464.05±35.7
482.93±
32.17

522.62±
39.74

caus mcint 71.89± 5.27 82.19± 6.04 78.64± 5.98 94.64± 7.01
103.73±
10.01

Table 2: Execution time (in milliseconds) and 95% confidence intervals for conditional and
causal queries with 4 evidence literals. The dash means that the timeout was reached. The
size of the datasets is expressed in number of nodes of the graph.

applications. The new inference algorithm are available in the cplint pack of
SWI-Prolog and can be tried online at http://cplint.lamping.unife.it [27].

In the future, we plan to extend the system for performing the full do calcu-
lus, in order to deal with models where the causal influences are partly unknown.

Acknowledgments:

This work was supported by the “National Group of Computing Science
(GNCS-INDAM)”.

21

http://cplint.lamping.unife.it

Inference
method Size of the dataset

10 20 30 40 50

cond exact 158.37±
38.36

– – – –

caus exact 2.81± 0.08 2.95± 0.06 2.91± 0.06 3.13± 0.08 2.97± 0.07

cond mcint 331± 14.59
506.29±
40.93

558.82±
68.84

686.51±91.9
795.54±
122.04

caus mcint 44.5± 1.4 51.95± 4.5 66.74± 5.25 92.36± 7.05 72.96± 4.31

Inference
method Size of the dataset

60 70 80 90 100
cond exact – – – – –
caus exact 3.12± 0.08 3.1± 0.08 3.1± 0.07 3.09± 0.07 3.51± 0.54

cond mcint 939.05±
248.19

1075.76±
149.54

1015.65±
160.3

1260.15±
199.99

1240.61±
208.2

caus mcint 86.13± 6.21 99.42± 7.7 83.02± 7.53 96.71± 8.15
109.95±
12.87

Table 3: Execution time (in milliseconds) and 95% confidence intervals for conditional and
causal queries with 6 evidence literals. The dash means that the timeout was reached. The
size of the datasets is expressed in number of nodes of the graph.

:- use_module(library(pita)).
:- pita.
:- begin_lpad.
:- action drug/0.
female:0.5.
recovery:0.6:- drug,\+ female.
recovery:0.7:- \+ drug,\+ female.
recovery:0.2:- drug,female.
recovery:0.3:- \+ drug,female.
drug:30/40:- \+ female.
drug:10/40:-female.
:-end_lpad.

Figure 4: LPAD for Simpson’s paradox.

22

:- use_module(library(pita)).
:- pita.
:- begin_lpad.
:- action has/1.
has(_) : 0.1.
has(P) : 0.4 :- trusts(P, Q), has(Q).
trusts(2,1).
trusts(3,1).
trusts(3,2).
trusts(4,1).
trusts(4,3).
:- end_lpad.

Figure 5: LPAD for viral marketing.

2 13

4

Figure 6: Social network for the viral marketing example.

bool={t,f}.
node={1..4}.
#domain node(P;Q).
has1: node -> bool.
has2: node,node -> bool.
[ri(P)] random(has1(P)).
[ri(P)] pr(has1(P,t))=1/10.
[rn(P,Q)] random(has2(P,Q)).
[rn(P,Q)] pr(has2(P,Q,t))=4/10.
has(P):- has1(P,t).
has(P):- has2(P,Q,t),trusts(P,Q),has(Q).
trusts(2,1).
trusts(3,1).
trusts(3,2).
trusts(4,1).
trusts(4,3).

Figure 7: P-log program for viral marketing.

23

has(P):- apriori(P).
has(P):- trusts(P, Q), has(Q), viral(P,Q).
apriori(_):0.1.
viral(_,_):0.4.
trusts(2,1).
trusts(3,1).
trusts(3,2).
trusts(4,1).
trusts(4,3).

Figure 8: ProbLog program for viral marketing.

0 10 20 30 40 50 60 70 80 90 100

Number of nodes

10 -2

10 -1

10 0

10 1

10 2

10 3

T
im

e
 (

m
s
)

cond exact

caus exact

cond mcintyre

caus mcintyre

Figure 9: Average time for conditional and causal queries with 2 evidence literals.

24

0 10 20 30 40 50 60 70 80 90 100

Number of nodes

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

T
im

e
 (

m
s
)

cond exact

caus exact

cond mcintyre

caus mcintyre

Figure 10: Average time for conditional and causal queries with 4 evidence literals.

0 10 20 30 40 50 60 70 80 90 100

Number of nodes

10 -1

10 0

10 1

10 2

10 3

10 4

T
im

e
 (

m
s
)

cond exact

caus exact

cond mcintyre

caus mcintyre

Figure 11: Average time for conditional and causal queries with 6 evidence literals.

25

0 10 20 30 40 50 60 70 80 90 100

Number of nodes

10 -1

10 0

10 1

10 2

10 3

10 4
T

im
e
 (

m
s
)

cond exact

caus exact

cond mcintyre

caus mcintyre

Figure 12: Average time for conditional and causal queries with 8 literal evidences.

Inference
method Size of the dataset

10 20 30 40 50

cond exact 1784.48±
451.27

– – – –

caus exact 2.89± 0.07 3.04± 0.06 2.99± 0.07 3.17± 0.08 3.06± 0.07

cond mcint 471.56±
34.17

1043.48±
255.12

1366.8±
232.7

1952.12±
382.1

1954.56±
336.25

caus mcint 37.71± 2.28 54.86± 3.42 71.15± 4.29 80.67± 8.1 83.86± 5.85

Inference
method Size of the dataset

60 70 80 90 100
cond exact – – – – –
caus exact 3.19± 0.08 3.2± 0.08 3.26± 0.09 3.07± 0.06 3.23± 0.09

cond mcint 4306.83±
1759.19

4679.31±
1304.03

3227.32±
1234.65

4265.53±
1375.54

6576.63±
2313.33

caus mcint 94.28± 7.36 116.85±9.25 101.36±9.51 100.42±7.34 115.94±9.33

Table 4: Execution time (in milliseconds) and 95% confidence intervals for conditional and
causal queries with 8 evidence literals. The dash means that the timeout was reached. The
size of the datasets is expressed in number of nodes of the graph.

26

Evidence literals Size of the dataset
10 20 30 40 50 60 70 80 90 100

2 2.5 1.7 2.4 2.4 1.6 2.3 2.3 3.0 2.0 2.6
4 0.9 1.8 2.4 2.7 1.6 2.6 2.6 2.2 2.7 2.9
6 1.2 1.4 2.5 3.9 1.7 2.7 2.3 2.3 2.1 2.3
8 0.9 2.2 1.5 3.2 2.3 2.3 3.1 2.0 2.5 2.0

Table 5: Mean Squared Error for approximate causal inference (caus mcintyre). All the values
must be multiplied by 10−3. The size of the datasets is expressed in number of nodes of the
graph.

27

References

[1] J. Pearl, Causality, Cambridge University Press, 2000.

[2] T. Sato, A Statistical Learning Method for Logic Programs with Distri-
bution Semantics, in: L. Sterling (Ed.), 12th International Conference on
Logic Programming, Tokyo, Japan, MIT Press, Cambridge, Massachusetts,
1995, pp. 715–729.

[3] D. Poole, The Independent Choice Logic for modelling multiple agents
under uncertainty, Artificial Intelligence 94 (1997) 7–56.

[4] T. Sato, Y. Kameya, PRISM: a language for symbolic-statistical modeling,
in: Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI-97), Vol. 97, 1997, pp. 1330–1339.

[5] J. Vennekens, S. Verbaeten, M. Bruynooghe, Logic Programs With Anno-
tated Disjunctions, in: B. Demoen, V. Lifschitz (Eds.), Logic Programming,
24th International Conference, ICLP 2004, Saint-Malo, France, Proceed-
ings, Vol. 3131 of Lecture Notes in Computer Science, Springer, Berlin Hei-
delberg, Germany, 2004, pp. 431–445. doi:10.1007/978-3-540-27775-0_
30.

[6] L. De Raedt, A. Kimmig, H. Toivonen, ProbLog: A probabilistic Prolog and
its application in link discovery, in: M. M. Veloso (Ed.), Proceedings of the
20th International Joint Conference on Artificial Intelligence, Hyderabad,
India (IJCAI-07), Vol. 7, AAAI Press, Palo Alto, California USA, 2007,
pp. 2462–2467.

[7] J. Vennekens, M. Denecker, M. Bruynooghe, CP-logic: A language of causal
probabilistic events and its relation to logic programming, Theory and
Practice of Logic Programming 9 (3) (2009) 245–308.

[8] F. Riguzzi, MCINTYRE: A Monte Carlo system for probabilistic logic
programming, Fundamenta Informaticae 124 (4) (2013) 521–541. doi:
10.3233/FI-2013-847.

[9] D. Poole, Abducing through negation as failure: Stable models within the
independent choice logic, J. Logic Program. 44 (1-3) (2000) 5–35.

[10] F. Riguzzi, The distribution semantics for normal programs with function
symbols, International Journal of Approximate Reasoning 77 (2016) 1 – 19.
doi:10.1016/j.ijar.2016.05.005.

[11] S. Wright, Correlation and causation, Journal of agricultural research 20 (7)
(1921) 557–585.

[12] A. Van Gelder, K. A. Ross, J. S. Schlipf, The well-founded semantics for
general logic programs, J. ACM 38 (3) (1991) 620–650.

28

http://dx.doi.org/10.1007/978-3-540-27775-0_30
http://dx.doi.org/10.1007/978-3-540-27775-0_30
http://dx.doi.org/10.3233/FI-2013-847
http://dx.doi.org/10.3233/FI-2013-847
http://dx.doi.org/10.1016/j.ijar.2016.05.005

[13] F. Riguzzi, T. Swift, The PITA system: Tabling and answer subsumption
for reasoning under uncertainty, Theory and Practice of Logic Program-
ming 11 (4–5) (2011) 433–449. doi:10.1017/S147106841100010X.

[14] A. Darwiche, P. Marquis, A knowledge compilation map, Journal of Arti-
ficial Intelligence Research 17 (2002) 229–264.

[15] T. Swift, D. S. Warren, XSB: Extending prolog with tabled logic program-
ming, Theory and Practice of Logic Programming 12 (1-2) (2012) 157–187.
doi:10.1017/S1471068411000500.

[16] V. Santos Costa, R. Rocha, L. Damas, The YAP Prolog system, Theory
and Practice of Logic Programming 12 (1-2) (2012) 5–34.

[17] J. Wielemaker, T. Schrijvers, M. Triska, T. Lager, SWI-Prolog, Theory
and Practice of Logic Programming 12 (1-2) (2012) 67–96. doi:10.1017/
S1471068411000494.

[18] C. Holzbaur, Metastructures vs. attributed variables in the context of
extensible unification, in: M. Bruynooghe, M. Wirsing (Eds.), Program-
ming Language Implementation and Logic Programming: 4th International
Symposium, PLILP’92 Leuven, Belgium, August 26–28, 1992 Proceed-
ings, Springer Berlin Heidelberg, Berlin, Heidelberg, 1992, pp. 260–268.
doi:10.1007/3-540-55844-6_141.

[19] M. Alberti, E. Bellodi, G. Cota, F. Riguzzi, R. Zese, cplint on SWISH:
Probabilistic logical inference with a web browser, Intelligenza Artificiale
11 (1) (2017) 47–64.

[20] J. Von Neumann, Various techniques used in connection with random dig-
its, Nat. Bureau Stand. Appl. Math. Ser. 12 (1951) 36–38.

[21] A. Nampally, C. Ramakrishnan, Adaptive MCMC-based inference in prob-
abilistic logic programs, arXiv preprint arXiv:1403.6036.

[22] G. Van den Broeck, I. Thon, M. van Otterlo, L. De Raedt, Dtproblog: A
decision-theoretic probabilistic prolog, in: M. Fox, D. Poole (Eds.), 24th
AAAI Conference on Artificial Intelligence, AAAI’10, Atlanta, Georgia,
USA, July 11-15, 2010, AAAI Press, 2010, pp. 1217–1222.

[23] C. Baral, M. Gelfond, N. Rushton, Probabilistic reasoning with answer
sets, Theory and Practice of Logic Programming 9 (1) (2009) 57–144. doi:
10.1017/S1471068408003645.

[24] A. Kimmig, B. Demoen, L. De Raedt, V. S. Costa, R. Rocha, On the
implementation of the probabilistic logic programming language ProbLog,
Theory and Practice of Logic Programming 11 (2-3) (2011) 235–262.

[25] A. Hyttinen, F. Eberhardt, M. Järvisalo, Do-calculus when the true graph
is unknown., in: 31st International Conference on Uncertainty in Artificial
Intelligence (UAI-15), 2015, pp. 395–404.

29

http://dx.doi.org/10.1017/S147106841100010X
http://dx.doi.org/10.1017/S1471068411000500
http://dx.doi.org/10.1017/S1471068411000494
http://dx.doi.org/10.1017/S1471068411000494
http://dx.doi.org/10.1007/3-540-55844-6_141
http://dx.doi.org/10.1017/S1471068408003645
http://dx.doi.org/10.1017/S1471068408003645

[26] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Sci-
ence 286 (5439) (1999) 509–512.

[27] F. Riguzzi, E. Bellodi, E. Lamma, R. Zese, G. Cota, Probabilistic logic
programming on the web, Software: Practice and Experience 46 (10) (2016)
1381–1396. doi:10.1002/spe.2386.

30

http://dx.doi.org/10.1002/spe.2386

	Introduction
	Preliminaries
	Probabilistic Logic Programming
	Causal Reasoning
	Causal Reasoning in Probabilistic Logic Programming

	The PITA Module
	Conditional Exact Inference
	Causal Exact Inference

	The MCINTYRE Module
	Conditional Approximate Inference
	Causal Approximate Inference

	Notable Examples
	Simpson's Paradox
	Viral Marketing

	Related Work
	Experiments
	Conclusions

