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Abstract. Logic Programs with Annotated Disjunctions (LPADs) allow
to express probabilistic information in logic programming. The semantics
of an LPAD is given in terms of well founded models of the normal logic
programs obtained by selecting one disjunct from each ground LPAD
clause. The paper presents SLGAD resolution that computes the (con-
ditional) probability of a ground query from an LPAD and is based on
SLG resolution for normal logic programs. The performances of SLGAD
are evaluated on classical benchmarks for normal logic programs under
the well founded semantics, namely the stalemate game and the ancestor
relation. The results show that SLGAD has good scaling properties and
is able to deal with cyclic programs.
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1 Introduction

The combination of logic and probability is a long standing problem in philos-
ophy and artificial intelligence, dating back to [1]. Recently, the work on this
topic has thrived leading to the proposal of novel languages that combine re-
lational and statistical aspects, such as Independent Choice Logic [2], ProbLog
[3], Stochastic Logic Programs [4], Bayesian Logic Programs [5], PRISM [6] and
CLP(BN ) [7]. Each of these languages has a different semantics that makes
it suitable for different domains: the identification of the best setting for each
language is currently under study [8, 9].

When we are reasoning about actions and effects and we have causal inde-
pendence [10] among different causes for the same effect, Logic Programs with
Annotated Disjunctions (LPADs) [11] seem particularly suitable. They extend
logic programs by allowing program clauses to be disjunctive and by annotating
each atom in the head with a probability. A clause can be causally interpreted
in the following way: the truth of the body causes the truth of one of the atoms
in the head non-deterministically chosen on the basis of the annotations. The
semantics of LPADs is given in terms of well founded models [12] of the normal
logic programs obtained by selecting one head for each disjunctive clause.
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In order to compute the (conditional) probability of queries, various op-
tions are possible. [13] showed that ground acyclic LPADs can be converted
to Bayesian networks. However, the conversion requires the complete grounding
of the LPAD, thus making the technique impractical.

[13] also showed that acyclic LPADs can be converted to Independent Choice
Logic (ICL) programs. Thus inference can be performed by using the Cilog2 sys-
tem [14]. An algorithm for performing inference directly with LPADs was pro-
posed in [15]. The algorithm, that will be called SLDNFAD in the following, is
an extension of SLDNF derivation and uses Binary Decision Diagrams, similarly
to what is presented in [3] for the ProbLog language. Both Cilog2 and SLD-
NFAD are complete and correct for programs for which the Clark’s completion
semantics [16] and the well founded semantics coincide, as for acyclic [17] and
modularly acyclic programs [18].

In this paper we present the SLGAD top down procedure for performing
inference with possibly (modularly) cyclic LPADs. SLGAD is based on the SLG
procedure [19] for normal logic programs and extends it in a minimal way.

SLGAD is evaluated on classical benchmarks for well founded semantics in-
ference algorithms, namely the stalemate game and the ancestor relation. In
both cases, various extensional databases are considered, encoding linear, cyclic
or tree-shaped relations. SLGAD is compared with Cilog2 and SLDNFAD on the
modularly acyclic programs. The results show that SLGAD, while being more
expensive than SLDNFAD on problems where SLDNFAD succeeds, is faster than
Cilog2 when the query is true in an exponential number of instances.

The paper is organized as follows. In Section 2 we present the syntax and
semantics of LPADs together with some properties of normal programs and of
LPADs. Section 3 provides the definition of the SLGAD procedure. In Section
4 we prove the correctness of SLGAD. Section 5 presents the experiments and,
finally, Section 6 concludes and presents directions for future work.

2 Preliminaries

A Logic Program with Annotated Disjunctions [11] T consists of a finite set of
formulas of the form

(H1 : α1) ∨ (H2 : α2) ∨ . . . ∨ (Hn : αn) : −B1, B2, . . . Bm

called annotated disjunctive clauses. In such a clause the Hi are logical atoms,
the Bi are logical literals and the αi are real numbers in the interval [0, 1] such
that

∑n
i=1 αi 6 1. The head of LPAD clauses implicitly contains an extra atom

null that does not appear in the body of any clause and whose annotation is
1 −

∑n
i=1 αi.

For a clause C of the form above, we define head(C) as {(Hi : αi)|1 6 i 6

n}∪{(null : 1−
∑n
i=1 αi)}, body(C) as {Bi|1 6 i 6 m}, Hi(C) as Hi and αi(C)

as αi. Let HB(T ) be the Herbrand base of T and let IT be the set of all the
possible Herbrand interpretations of P (i.e., subsets of HB(T )). If T contains
function symbols, then HB(T ) is infinite, otherwise it is finite.

2
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In order to define the semantics of a non-ground T , we must generate the
grounding T ′ of T . Each ground annotated disjunctive clause represents a prob-
abilistic choice between the ground non-disjunctive clauses obtained by selecting
only one head. The intuitive interpretation of a ground clause is that the body
represents an event that, when it happens (i.e. it becomes true), causes an atom
in the head (an effect) to happen (i.e. to become true). If the atom selected is
null, this is equivalent to having no effect.

The semantics of an LPAD, given in [11], requires the grounding to be finite,
so the program must not contain function symbols if it contains variables.

By choosing a head atom for each ground clause of an LPAD we get a normal
logic program called an instance of the LPAD. A probability distribution is de-
fined over the space of instances by assuming independence between the choices
made for each clause.

A choice κ is a set of triples (C, θ, i) where C ∈ T , θ is a substitution that
grounds C and i ∈ {1, . . . , |head(C)|}. (C, θ, i) means that, for ground clause Cθ,
the head Hi : αi was chosen. A choice κ is consistent if (C, θ, i) ∈ κ, (C, θ, j) ∈
κ ⇒ i = j, i.e. only one head is selected for a ground clause.

A consistent choice is a selection σ if for each clause Cθ in the grounding of
T there is a triple (C, θ, i) in σ. We denote the set of all selections σ of a program
T by ST .

A consistent choice κ identifies a normal logic program Tκ = {(Hi(C) :
−body(C))θ|(C, θ, i) ∈ κ} that is called a sub-instance of T . If σ is a selection,
Tσ is called an instance. For a consistent choice κ, let U(κ) be the set of instances
that are supersets of Tκ, i.e., the set of instances Tσ with σ a selection such that
σ ⊇ κ.

We now assign a probability to a consistent choice κ. The probability of a
consistent choice κ is the product of the probabilities of the individual choices
made, i.e. Pκ =

∏
(C,θ,i)∈κ αi(C). The probability of instance Tσ is Pσ.

The semantics of the instances of an LPAD is given by the well founded
semantics (WFS) [12]. Given a normal program T , we call WFM(T ) its well
founded partial model. For each instance Tσ, we require that WFM(Tσ) is two-
valued, since we want to model uncertainty solely by means of disjunctions. An
LPAD T is called sound iff, for each selection σ in ST , WFM(Tσ) is two-valued.
In the following we consider only sound programs.

The probability of an interpretation I ∈ IT according to T is given by the
sum of the probabilities of the instances that have I as the well founded model,
i.e.

PT (I) =
∑

σ∈ST ,WFM(Tσ)=I

Pσ.

The probability of a formula χ according to T is given by the sum of the
probabilities of interpretations in which the formula is true, i.e.

PT (χ) =
∑

I∈IT ,I|=χ

P (I).

3
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Equivalently, the probability of a formula χ is given by the sum of the prob-
abilities of the instances in which the formula is true according to the WFS:

PT (χ) =
∑

Tσ|=WFSχ

Pσ

LPADs show patterns of causal independence [10]: each ground clause with atom
a in the head is a potential cause of a that is activated when the body becomes
true. Each cause is independent of the other so they combine with the noisy
or law [20]. Such a law states that, if there are n causes (represented by binary
variables c1, . . . , cn) for an effect e (a binary variable) and the probabilities of the
causes of happening (i.e. of assuming the value 1) are p1, . . . , pn, the probability
of happening of the effect (i.e. of assuming the value 1) is given by

1 −
n∏

i=1

(1 − pi)

Example 1. Consider the dependency of a person’s itching from him having al-
lergy or measles:

C1 = itching(X, strong) : 0.3 ∨ itching(X,moderate) : 0.5 : − measles(X).

C2 = itching(X, strong) : 0.2 ∨ itching(X,moderate) : 0.6 : − allergy(X).

C3 = allergy(david).

C4 = measles(david).

This program models the fact that itching can be caused by allergy or measles.
Measles causes strong itching with probability 0.3, moderate itching with prob-
ability 0.5 and no itching with probability 1 − 0.3 − 0.5 = 0.2; allergy causes
strong itching with probability 0.2, moderate itching with probability 0.6 and
no itching with probability 1 − 0.2 − 0.6 = 0.2.

If only one cause happens, the probability of the effect is given by the param-
eter in the head. If more than one cause happens, the probability of the effect is
given by the noisy or relation. For example, itching(david, strong) is true in 5
of the 9 instances of the program and its probability is

0.3 · 0.2 + 0.3 · 0.6 + 0.3 · 0.2 + 0.5 · 0.2 + 0.2 · 0.2 = 0.44

If we compute the probability by noisy or we get 1− (1− 0.3) · (1− 0.2) = 0.44.

Example 2. Consider a probabilistic game in which a position is winning with a
certain probability if there is a move to another position that is losing for the
opponent. This game can be represented by

win(X,white) : 0.8 : − move(X,Y ),¬win(Y, black).

win(X, balck) : 0.8 : − move(X,Y ),¬win(Y,white).

4
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plus facts for the move predicate.
If move is acyclic, then the program is sound. Otherwise, there are instances

that do not have a total well founded model, namely those where the win head
is selected for all the ground clauses whose instance of the move(X,Y ) atom is
in the cycle.

Let us now see other properties of LPADs. For a consistent choice κ, Pκ is
the sum of the probability of the instances that are supersets of Tκ, i.e.

Pκ =
∑

σ∈ST ,σ⊇κ

Pσ

Two consistent choices κ1 and κ2 are incompatible if there exists a couple
(C, θ) such that (C, θ, i) ∈ κ1, (C, θ, j) ∈ κ2 and i 6= j. In this case U(κ1) and
U(κ2) are disjoint, so

∑

Tσ∈U(κ1)∪U(κ2)

Pσ = Pκ1
+ Pκ2

Two important properties of normal logic program are acyclicity and modular
acyclicity, we refer to [17] and [18] respectively for the definitions. For acyclic and
modularly acyclic programs the least Herbrand model of the Clark’s completion
and the well founded partial model coincide, so queries can be answered in the
WFS by means of SLDNF.

An LPAD is (modularly) acyclic if all of its instances are (modularly) acyclic.
An LPAD is range restricted if all the variables appearing in the head of

clauses also appear in the body.
The notion of relevance is adapted from the one given in [21] for extended

logic programs: a clause C is directly relevant to a ground goal Q if there exists
an atom A that appears in a literal of Q and is in the head of a grounding of
C. A clause C is relevant to a ground goal Q if it is directly relevant to Q or if
there exists a clause C ′ that has A in the head of a grounding C ′θ of C ′ and C
is relevant to body(C ′θ).

[21] showed that the WFSX semantics for extended logic programs (and thus
also the WFS for normal logic programs) has the property of relevance: given a
normal program T , the truth of ground atom A in WFM(T ) does not change
if we add to T clauses that are not relevant to A.

3 SLGAD Resolution Algorithm

In this section we present Linear resolution with Selection function for Gen-
eral logic programs with Annotated Disjunctions (SLGAD) that extends SLG
resolution [22, 19] for dealing with LPADs.

In the following we give a brief sketch of the implementation of SLG resolu-
tion as presented in [19]. SLG builds a search forest for a subgoal (i.e. a (partially
instantiated) atom) by performing depth first search. Besides a stack S of sub-
goals, SLG keeps a table T in which it stores, for each subgoal A considered in

5
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the computation, the set of answers (i.e. instantiations of the subgoal) already
computed Anss, the set of resolvents that wait for new answers for A, separated
into a set Poss that has A selected and a set Negs that has ¬A selected, and
a boolean flag Comp that indicates whether A has been completely evaluated.
After every resolution step for a subgoal A, SLG tests whether all possible an-
swers for A have been computed: if so, it sets Comp to true. When it encounters
a case of a possible loop through negation, it “delays” the selected literal ¬A by
inserting it into a dedicated data structure of the resolvent. Delayed literals are
then removed if they turn out to be true.

SLG uses X-clauses to represent resolvents with delayed literals.

Definition 1 (X-Clause). An X-clause X is a clause of the form A : −D|B
where A is an atom, D is a sequence of ground negative literals and (possibly
unground) atoms and B is a sequence of literals. Literals in D are called delayed
literals. If B is empty, an X-clause is called an X-answer clause.

An ordinary program clause is seen as a X-clause with an empty set of delayed
literals.

SLG is based on the operation of SLG resolution and SLG factoring on X-
clauses. In particular, SLG resolution is performed between an X-clause A : −|A
and a program clause or between an X-clause and an X-answer.

In SLGAD, X-clauses are replaced by XD-clauses.

Definition 2 (XD-Clause). An XD-clause G is a quadruple (X,C, θ, i) where
X is an X-clause, C is a clause of T , θ is a substitution for the variables of C
and i ∈ {1, . . . , |head(C)|}. Let X be A : −D|B: if B is empty, the XD-clause is
called an XD-answer clause.

In SLGAD, SLG resolution between an X-clause A : −|A and a program clause
is replaced by SLGAD goal resolution and SLG resolution between an X-clause
and an X-answer is replaced by SLGAD answer resolution.

Definition 3 (SLGAD Goal Resolution). Let A be a subgoal and let C be
a clause of T such that A is unifiable with an atom Hi in the head of C. Let C ′

be a variant of C with variables renamed so that A and C ′ have no variables in
common. We say that A is SLGAD goal resolvable with C and the XD-clause

((A : −|body(C ′))θ, C ′, θ, i)

is the SLGAD goal resolvent of A with C on head Hi, where θ is the most general
unifier of A and H ′

i. C ′ is kept in the resolvent because we must be able to recover
the ground program clause to which the XD-clause refers, namely C ′θ.

Definition 4 (SLGAD Answer Resolution). Let G be a XD clause (A :
−D|L1, . . . , Ln, C, θ, i) where n > 0 and Lj be the selected atom. Let F be an
XD-answer clause with an empty set of delayed literals, and let F ′, of the form
(A′ : −|, E′, θ′, i′), be a variant of F with variables renamed so that G and F ′

6
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have no variables in common. If Lj and A′ are unifiable then we say that G is
SLGAD answer resolvable with F and the XD-clause

((A : −D|L1, . . . , Lj−1, Lj+1, . . . , Ln)δ, C, θδ, i)

is the SLGAD answer resolvent of G with F , where δ is the most general unifier
of A′ and Lj.

SLG factoring is replaced by SLGAD factoring.

Definition 5 (SLGAD Factoring). Let G be a XD-clause (A : −D|L1, . . . ,
Ln, C, θ, i) where n > 0 and Lj be the selected atom. Let F be an XD-answer
clause, and let F ′, of the form (A′ : −D′|, E′, θ′, i′), be a variant of F with
variables renamed so that G and F ′ have no variable in common. If D′ is not
empty and Lj and A′ are unifiable then the SLGAD factor of G with F is

((A : −D,Lj |L1, . . . , Lj−1, Lj+1, . . . , Ln)δ, C, θδ, i)

where δ is the most general unifier of A′ and Lj.

SLGAD goal resolution, SLGAD answer resolution and SLGAD factoring are
equivalent to their SLG counterparts on the underlying X-clauses.

The SLGAD algorithm is defined with a procedural pseudo code that contains
a non-deterministic choice point. The main function of the algorithm is shown in
Figure 1. It takes as input a ground atom A and a program T and it keeps four
global variables. The first three are shared with SLG: the table T , the stack of
subgoals S and the counter Count. The fourth variable is specific of SLGAD and
is used to record all the clauses used in the SLGAD derivation together with the
head selected: it is a choice κ, i.e., a set of triples (C, θ, i) where C is a clause of
T , θ is a substitution that grounds C and i is the index of an atom in the head
of C. We assume that the global variables are copied in different branches of the

Fig. 1. Procedure SLGAD

1 function SLGAD(A,T )
2 begin

3 Initialize Count, T , S, DFN, PosMin and NegMin as in SLG;
4 κ := ∅;
5 let ψ be the set of all the values for κ after an execution of
6 SLG SUBGOAL(A,PosMin,NegMin) such that T contains A as an answer;
7 return

∑
κ∈ψ

Pκ

8 end

search tree generated by the choice points, so that a modification in a branch
does not influence the other branches. The search tree is explored depth first.

The SLGAD algorithm modifies in a minimal way SLG: it is composed of
the same procedures as SLG [19], plus procedure ADD CLAUSE. We refer to

7
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[19] for a detailed description of the individual SLG procedures, here we re-
port only the differences, that are indicated in italics in the figures. Procedure
SLG SUBGOAL (see Figure 2) differs from that of SLG because in line 3 each
SLGAD goal resolvent is considered rather than each SLG resolvent. Procedure
SLG NEWCLAUSE (see Figure 2) performs resolution on the selected positive
or negative literal in the body of the clause or adds an answer if the body is
empty. SLG NEWCLAUSE is the same as in SLG with X-clauses replaced by
XD-clauses. The main difference is in procedure SLG ANSWER (see Figure 3)
where a call to ADD CLAUSE is added in line 4.

Fig. 2. Procedures SLG SUBGOAL and SLG NEWCLAUSE

1 procedure SLG SUBGOAL(A,PosMin,NegMin)
2 begin

3 for each SLGAD goal resolvent G of A with some clause C ∈ T

4 on the head Hi do begin

5 SLG NEWCLAUSE(A,G,PosMin,NegMin);
6 end;
7 SLG COMPLETE(A,PosMin,NegMin,κ);
8 end;
9
10 procedure SLG NEWCLAUSE(A,G,PosMin,NegMin)
11 begin

12 if G has no body literals on the right of | then

13 SLG ANSWER(A,G,PosMin,NegMin)
14 else if G has a selected atom B

15 SLG POSITIVE(A,G,B,PosMin,NegMin)
16 else if G has a selected ground negative literal ¬B
17 SLG NEGATIVE(A,G,B,PosMin,NegMin)
18 else begin /* G has a selected non-ground negative literal */
19 halt with an error message
20 end

If the answer G is not subsumed by an answer already present in the table,
ADD CLAUSE is called (see Figure 4) that modifies κ and returns a value to
SLG ANSWER in the variable Derivable. If G = (X,C, θ, i)1, ADD CLAUSE
adds a new triple (C, θ, j) to the current κ set . If the program is range restricted,
Cθ is ground, see Lemma 3. ADD CLAUSE first checks whether the clause
Cθ already appears in the current choice with a head index different from i:
if so, it fails the derivation. Otherwise, it non-deterministically selects a head

1 C is the clause of the program from which the XD-clause G was obtained by SLGAD
goal resolution, i is the index of the head used in the goal resolution and θ is the
composition of the substitutions of all the derivations and factorings performed on
G

8
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Fig. 3. Procdure SLG ANSWER

1 procedure SLG ANSWER(A,G,PosMin,NegMin)
2 begin

3 if G is not subsumed by any answer in Anss(A) in T then begin

4 ADD CLAUSE(G,Derivable);
5 if Derivable then begin

6 insert G into Anss(A);
7 if G has no delayed literals then begin;
8 reset Negs(A) to empty;
9 let L be the list of all pairs (B,H ′), where (B,H) ∈ Poss(A) and
10 H is the SLGAD answer resolvent of H with G;
11 for each (B,H ′) in L do begin

12 SLG NEWCLAUSE(B,H’,PosMin,NegMin);
13 end;
14 end else begin /* G has a non empty delay */
15 if no other answer in Anss(A) has the same head as G does then

16 begin

17 let L be the list of all pairs (B,H ′), where (B,H) ∈ Poss(A)
18 and H is the SLGAD factor of H with G;
19 for each (B,H ′) in L do begin
20 SLG NEWCLAUSE(B,H ′,PosMin,NegMin);
21 end;
22 end;
23 end;
24 end;
25 end;
26 end;

9
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index j from {1, . . . , |head(C)|}: if j = i this means that the subgoal in the
head is derivable in the sub-instance represented by κ, so it sets Derivable to
true. If j 6= i, then Derivable is set to false. In backtracking, all elements of
{1, . . . , |head(C)|} are selected.

Fig. 4. Procedure ADD CLAUSE

1 procedure ADD CLAUSE(G,Derivable)
2 begin

3 let G be (X,C, θ, i);
4 if ∃k : (C, θ, k) ∈ κ, k 6= i then begin

5 fail;
6 end else begin

7 choose an index j from {1, . . . , |head(C)|} (choice point);
8 if i = j then begin

9 Derivable:= true;
10 end else begin

11 Derivable:= false;
12 end

13 κ := κ ∪ {(C, θ, j)};
14 end

15 end

Since every clause relevant to a subgoal is eventually reduced to an XD-
answer, it is sufficient to update κ only in SLG ANSWER by means of ADD CLA-
USE. The cases where j 6= i are necessary because we must consider also the
possibility that the subgoal A is derived not using head i of clause Cθ. It may
be that A could be derived in a possibility j 6= i using other clauses and/or that
the possibility j is used to derive a subgoal necessary for this second derivation
branch: if we do not consider these possibilities we could miss some explanations
for A.

SLG ANSWER then behaves differently depending on the value of Deriv-
able: if it is true, a new answer has been found so the rest of the code of the
SLG ANSWER procedure of SLG is performed with X-clauses replaced by XD-
clauses, otherwise it exits without modifying the global variables.

Procedure SLG POSITIVE, that performs resolution on a positive literal,
(see Figure 5) modifies the one of SLG by replacing SLG resolution with SL-
GAD answer resolution and SLG factoring with SLGAD factoring (see the in-
structions in italics in the figure). The other SLG procedure are modified simply
by replacing X-clauses with XD-clauses.

Example 3. Let us consider the behaviour of the procedure for the query A1 =
itching(david, strong) from the program of example 1. SLGAD is called with
A1 as the subgoal. SLGAD initializes the table by adding the entry

t1 = (itching(david, strong), {}, [], [], false)

10
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Fig. 5. Procdure SLG POSITIVB

1 procedure SLG POSITIVE(A,G,B,PosMin,NegMin)
2 begin

3 if B is not in table T then begin

4 insert (B, {}, [(A,G)], [], false) into T ;
5 DFN:= Count; PosLink:=Count; NegLink:=maxint;
6 push (B,DFN,PosLink,NegLink) onto stack S
7 Count:=Count+1;
8 BPosMin:=DFN; BNegMin:=maxint;
9 SLG SUBGOAL(B,BPosMin,BNegMin);
10 UPDATE SOLUTION(A,B,pos,PosMin,NegMin,BPosMin,BNegMin);
11 end else begin

12 if Comp(B) is not true then begin

13 insert (A,G) into Poss(B);
14 UPDATE LOOKUP(A,B,pos,PosMin,NegMin);
15 end;
16 let L be the empty list;
17 for each atom B in the head of some answer in Anss(B) do begin

18 if B′ : −| ∈ Anss(B) then begin

19 lef G′ be the SLGAD answer resolvent of G with B′ : −|;
20 insert (A,G′) into L;
21 end else begin

22 let H ∈ Anss(B) with head atom B′;
23 let G′ be the SLGAD factor of G with H;
24 insert (A,G′) into L;
25 end;
26 end;
27 for each (A,G′) in L do begin

28 SLG NEWCLAUSE(A,G′,PosMin,NegMin);
29 end;
30 end;
31 end

11



Technical Report University of Ferrara ENDIF CS-2008-02

and the stack by pushing the entry

s1 = (itching(david, strong), 1, 1,maxint).

In SLG SUBGOAL (call Q1) two SLGAD goal resolvents of A1 with the
clauses of the program are found, namely

G1 = (itching(david, strong) : −|measles(david), C1, {X/david}, 1)

G2 = (itching(david, strong) : −|allergy(david), C2, {X/david}, 1)

SLG NEWCLAUSE (call Q2) is called first with A1 as the subgoal and G1 as
the XD-clause. Since G1 has a non empty body, SLG POSITIVE (call Q3) is
invoked. The selected literal measles(david) is not in the table so

t2 = (measles(david), {}, [(A1, G1)], [], false)

is inserted into T . Then

s1 = (measles(david), 2, 2,maxint)

is pushed onto the statck. SLG SUBGOAL (call Q4) is called with subgoal A2 =
measles(david). One SLGAD goal resolvent of A2 with clauses of the program
is found, namely

G3 = (measles(david) : −|, C3, {}, 1)

SLG NEWCLAUSE is invoked and, since the body of the XD-clause is empty
(G3 is an sntswer), SLG ANSWER (call Q5) is called. Since no answer for A2

is in the table, ADD CLAUSE is invoked but it does not generate choice points
because C3 is deterministic so it returns setting Derviable to true.

The answer measles(david) : −| is added to the set of answers of A2 in table
entry t2 that becomes

t2 = (measles(david), {}, [(A1, G1)], [measles(david) : −|], false).

G1 has no delayed literals, so SLGAD answer resolution is performed between
G1 and G3 obtaining

G4 = (itching(david, strong) : −|, C1, {X/david}, 1)

SLG NEWCLAUSE (call Q6) is then called with A = A1 and G = G4.
Since G4 is an answer, SLG ANSWER (call Q7) is invoked. No answer for

A1 is present in the table so ADD CLAUSE is called. This procedure generates
three derivation branches B1, B2 and B3:

– in B1, κ = {(C1, {X/david}, 1)} and Derivable=true,
– in B2, κ = {(C1, {X/david}, 2)} and Derivable=false and
– in B3, κ = {(C1, {X/david}, 3)} and Derivable=false.
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Let us now consider derivation branch B1: itching(david, strong) : −| is added
to the set of answers for A1. Since no subgoal depends positively or negatively on
A1, SLG ANSWER (call Q7) returns, SLG NEWCLAUSE (call Q6) returns and
SLG COMPLETE is called that determines that itching(david, strong) cannot
be marked as completed yet.

The second SLGAD goal resolvent G2 of A1 is considered in call Q1 of
SLG SUBGOAL. SLG NEWCLAUSE (call Q8) is invoked with A = A1 and
G = G2. Since G2 has a non- empty body, SLG POSITIVE (call Q9) is called
that inserts

t3 = (allergy(david), {}, [(A1, G2)], [], false)

into the table and invokes SLG SUBGOAL (call Q10) with subgoal A3 =allergy
(david). As for measles(david), this results in the addition to the table of the
answer

allergy(david) : −|

and in SLG ANSWER SLGAD answer resolution is performed obtaining

G5 = (itching(david, strong) : −|, C2, {X/david}, 1)

This is an answer, SLG NEWCLAUSE and SLG ANSWER are called but, since
itching(david, strong) : −| is already present in the table, they return without
modifying the table. So call Q1 returns and we have one successful derivation
with

κ1 = {(C1, {X/david}, 1)}.

For derivation branch B2 Derivable is false, so SLG ANSWER (call Q7)
exits without modifying the table, SLG NEWCLAUSE (call Q6) returns and
SLG COMPLETE determines that itching(david, strong) cannot be marked as
completed yet.

Now the second SLGAD goal resolvent G2 of A1 is considered in call Q1

of SLG SUBGOAL. SLG NEWCLAUSE (call Q11) and SLG POSITIVE (call
Q12) are invoked: the latter inserts

t3 = (allergy(david), {}, [(A1, G2)], [], false)

into the table and calls SLG SUBGOAL (call Q13) with subgoal

A3 = allergy(david).

As before the answer allergy(david) : −| is added to the table and in SLG ANSW-
ER (call Q14) SLGAD answer resolution is performed obtaining

G6 = (itching(david, strong) : −|, C2, {X/david}, 1)

SLG NEWCLAUSE is invoked with A = A1 and G = G6 (call Q15). This is
an answer not present in the table, SLG ANSWER (call Q16) and, in turn,
ADD CLAUSE are called. The latter procedure generates three computation
branches B2,1, B2,2 and B2,3:

13
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– B2,1 with κ = {(C1, {X/david}, 2), (C2, {X/david}, 1)} and Derivable=true,
– B2,2 with κ = {(C1, {X/david}, 2), (C2, {X/david}, 2)} and Derivable=false

and
– B2,3 with κ = {(C1, {X/david}, 2), (C2, {X/david}, 3)} and Derivable=false.

In derivation branch B2,1: itching(david, strong) : −| is added to the set of an-
swers for A1. Since no subgoal depends positively or negatively on A1, SLG ANS-
WER (call Q16) returns, SLG NEWCLAUSE returns (call Q15) and SLG COMP-
LETE is called that establish that itching(david, strong) can be completed.

So SLG SUBGOAL (call Q1) exits and we have one successful derivation
with

κ2 = {(C1, {X/david}, 2), (C2, {X/david}, 1)}.

Similarly, for derivation branches B3 we get the branhces

– B3,1 with κ = {(C1, {X/david}, 3), (C2, {X/david}, 1)} and Derivable=true,
– B3,2 with κ = {(C1, {X/david}, 3), (C2, {X/david}, 2)} and Derivable=false

and
– B3,3 with κ = {(C1, {X/david}, 3), (C2, {X/david}, 3)} and Derivable=false.

From these, only B3,1 leads to a success with

κ3 = {(C1, {X/david}, 3), (C2, {X/david}, 1)}.

So, overall the probability of itching(david, strong) is

0.3 + 0.5 · 0.2 + 0.4 · 0.3 = 0.44

.

If the conditional probability of a ground atom A given another ground atom E
must be computed, rather then computing PT (A∧E) and PT (E) separately, an
optimization can be done: we first identify the choices for all successful deriva-
tions for E and then we look for the choices for the successful derivations of A
starting from a choice of E, as shown in Figure 6.

4 Proof of Correctness

The proof of the soundness and completeness of SLDAG with respect to the
LPAD semantics is based on the theorem of partial correctness of SLG [22, 23]:
SLG is sound and complete given an arbitrary but fixed computation rule when
it does not flounders. The truth of computed answers with respect to the well
founded partial model can be expressed by the following corollary of Theorem
5.5 of [23]:

Corollary 1. Let T be a normal logic programs, R an arbitrary but fixed compu-
tation rule, A a ground subgoal, T the table that is built by procedure SLG (Figure
14 in [19]) for query atom A and program T and suppose that no floundering
occurs, then:

14
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Fig. 6. Procedure SLGAD COND

1 procedure SLGAD COND(A,E,T )
2 begin

3 Initialize Count, T , S, DFN, PosMin and NegMin as in SLG;
4 κ := ∅;
5 let ψE be the set of all the values for κ after a successful call of
6 SLG SUBGOAL(E,PosMin,NegMin) such that T contains A as an answer;
7 if

∑
κ∈ψE

Pκ = 0 then

8 return undefined
9 else begin

10 Initialize Count, T , S, DFN, PosMin and NegMin as in SLG;
11 let ψA be the set of all the values of κ after a successful execution of
12 begin

13 pick a choice κ′ from ψE ;
14 κ = κ′;
15 SLG SUBGOAL(E,PosMin,NegMin);
16 T contains A as an answer;
17 end

18 return P (A|E) =
∑
κ′∈ψA

Pκ′∑
κ∈ψE

Pκ

19 end

20 end

– if T contains an answer X-clause that has A in the head and an empty set of
delayed literals then A is true in WFM(P ); if T does not contain an answer
X-clause that has A in the head then A is false in WFM(T ); otherwise A
is undefined;

– if A is true in WFM(T ), then there exists in T an answer X-clause with
an empty set of delayed literals; if A is false in WFM(P ) then there does
not exist in T an answer X-clause with A in the head; if A is undefined in
WFM(T ) then T contains at least one answer X-clause with A in the head
and all answer X-clauses for A have a non-empty set of delayed literals.

Lemma 1. If G = (A : −D|B,C, θ, i) appears anywhere in T , the variables
appearing in Cθ are those appearing in A:-D—B.

Proof. We will prove the lemma by induction on the sequence of operations
on XD-clauses. G is inserted into a table by SLGAD goal resolution: for the
definition of the operation the lemma holds.

SLGAD answer resolution and SLGAD factoring keep the property. ⊓⊔

Lemma 2. If T is range restricted, all XD-answers in the table T after a call
to SLGAD are ground.

Proof. The lemma can be proved by induction on the number of answers added
to the table. ⊓⊔
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Lemma 3. If T is range restricted and (C, θ, i) belongs to choice κ after a suc-
cessful execution of SLG SUBGOAL (Figure 2), then Cθ is ground.

Proof. Each triple (C, θ, i) is inserted into κ only in SLG ANSWER called with
an answer XD-clause G = (A : −D|, C, θ, i). Since A : −D| is ground, by Lemma
1 Cθ is ground. ⊓⊔

Theorem 1. If T is sound and range restricted, A is ground and no floundering
occurs in the call of SLGAD(A, T ), then SLGAD(A, T ) returns PT (A).

Proof (Sketch). Let T and κ be the values of the table and of the choice after the
execution of SGL SUBGOAL. Then κ is a consistent choice, since ADD CLAUSE
adds a triple (C, θ, i) only if (C, θ, j) with j 6= i is not present in κ.

SLG SUBGOAL considers all the clauses that are directly relevant to the
subgoal A and it may call SLG NEWCLAUSE with XD-clauses that are incon-
sistent with each other or with the current choice. Thus, the sets of resolvents
waiting for answers for a subgoal in the table T may refer to incompatible choices.
However, the set of answers is updated only by SLG ANSWER, that adds an
element to κ only if the answer is not already present in the table and if κ is
consistent with the previous choices.

Since resolutions and factorings are performed only with program clauses or
answers, given a successful execution of SLGAD, a successful execution of SLG
can be identified that contains a subset of the steps performed by SLGAD and
that uses program clauses only from Tκ. Thus, if A appears in the set of answers
of T it can be derived by SLG in Tκ, .

Given that SLG is correct and T is sound, if A appears as an answer in T
then it does not have delayed literals and so is true in the well founded model of
Tκ. Since the addition of other clauses to Tκ can not alter the truth of A then
A is true also in all the instances of U(κ).

Since SLG is complete and SLG SUBGOAL considers all the clauses that are
directly relevant to the subgoal, if there exists a sub-instance Tδ such that A is
derivable by SLG in Tδ, in backtracking SLGAD will find it.

Each consistent choice returned by SLGAD is incompatible with the others
because ADD CLAUSE considers a ground clause only once and generates a
different search branch for each head. Therefore,

PT (A)
∑

σ∈ST ,Tσ|=A

Pσ =
∑

σ∈ST ,σ⊇κ,κ∈ψ

Pσ =
∑

κ∈ψ

Pκ

⊓⊔

Note that SLGAD can be used to check the unsoundness of an LPAD T : if all
the answers for A in the table after one of the successful calls to SLG SUBGOAL
contains delayed literals, then T is unsound. The implemented system actually
returns unsound in such a case.

The proof of correctness of SLGAD COND is similar and is omitted for
brevity.
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5 Experiments

We tested SLGAD on some synthetic problems that were used as benchmarks
for SLG [19, 24]: win, ranc and lanc. win is an implementation of the stalemate
game and contains the clause

win(X):0.8 :- move(X,Y),\+ win(Y).

ranc and lanc model the ancestor relation with right and left recursion respec-
tively:

rancestor(X,Y):0.8 :- move(X,Y).

rancestor(X,Y):0.8 :- move(X,Z),rancestor(Z,Y).

lancestor(X,Y):0.8 :- move(X,Y).

lancestor(X,Y):0.8 :- lancestor(Z,Y),move(X,Z).

Various definitions of move are considered: a linear and acyclic relation, con-
taining the tuples (1, 2), . . . , (N − 1, N), a linear and cyclic relation, containing
the tuples (1, 2), . . . , (N − 1, N), (N, 1), and a tree relation, that represents a
complete binary tree of height N , containing 2N+1 + 1 tuples. For win, all the
move relations are used, while for ranc and lanc only the linear ones.

SLDAG was compared with Cilog2 and SLDNFAD. Cilog2 [14] computes
probabilities by identifying consistent choices on which the query is true then it
makes them mutually incompatible with an iterative algorithm. SLDNFAD [15]
extends SLDNF in order to store choices and computes the probability with an
algorithm based on Binary Decision Diagrams.

For SLGAD and SLDNFAD we used the implementations in Yap Prolog2

available in the cplint suite3. SLGAD code is based on the SLG system4. For
Cilog2 we ported the code available on the web5 to Yap. All the experiments
were performed on Linux machines with an Intel Core 2 Duo E6550 (2333 MHz)
processor and 4 GB of RAM.

The execution times for the query win(1) to the win program are shown in
Figures 7, 8 and 9 as a function of N for linar, cyclic and tree move respectively.

The execution times for the query ancestor(1,N) to the ranc program are
shown in Figures 12 and 13 as a function of N for linar and cyclic move respec-
tively.

The execution times for the query ancestor(1,N) to the lanc program are
shown in Figures 10 and 11 as a function of N for linar and cyclic move respec-
tively.

win has an exponential number of instances where the query is true and the
graphs show the combinatorial explosion.

2 http://www.ncc.up.pt/∼vsc/Yap/
3 http://www.ing.unife.it/software/cplint/, also included in the CVS version of

Yap
4 http://engr.smu.edu/∼wchen/slg.html
5 http://www.cs.ubc.ca/spider/poole/aibook/code/cilog/CILog2.html
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Fig. 7. Execution times for win with linear move
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Fig. 8. Execution times for win with cyclic move
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Fig. 9. Execution times for win with tree move
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Fig. 10. Execution times for lanc with linear move
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Fig. 11. Execution times for lanc with cyclic move
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Fig. 12. Execution times for ranc with linear move
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Fig. 13. Execution times for ranc with cyclic move

On the ancestor dataset, the proof tree has only one branch with a number of
nodes proportional to N . However, the execution time of SLGAD increases more
than linearly as a function of N because each derivation step requires a lookup
and an insert in the table T that is implemented as a tree-like data structure
(2-3 tree [25] in the SLG system). Each insert and lookup take logarithmic time.

SLGAD is compared with Cilog2 and SLDNFAD om the problems that are
modularly acyclic and right recursive, i.e. win with linear and tree move and
ranc with linear move. On the other problems a comparison was not possible
because Cilog2 and SLDNFAD would go into a loop. In win all the algorithm
show the combinatorial explosion, with SLGAD performing better than Cilog2
and worse than SLDNFAD. On ranc with linear move, SLGAD takes longer than
Cilog2 and SLDNFAD, with Cilog2, SLDNFA and SLGAD taking 8.3, 1165.4
and 4726.8 seconds for N = 20000 respectively.

6 Conclusions and Future Works

We have presented the SLGAD top-down procedure for computing the proba-
bility of LPADs queries that is based on SLG [19] and we have experimentally
compared it with Cilog2 and SLDNFAD.

In the future, we plan to consider the possibility of answering queries in
an appoximate way, similary to what is done in [3], and we plan to extend
the interpreter by considering also aggregates and the possibility of having the
probabilities in the head depend on literals in the body.
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