
A Comparison of ILP Systems on the Sisyphus Dataset

Fabrizio Riguzzi
Dipartimento di Ingegneria, Università di Ferrara,

Via Saragat 1, 41100 Ferrara, Italy
friguzzi@ing.unife.it

1 Introduction

In this paper we present a comparison of two Induc-
tive Logic Programming (ILP) systems on the Sisyphus
dataset. The aim of the comparison is to to show how the
systems behave on a large dataset. The considered systems
are Aleph and Tilde. Both systems have an unacceptable
execution time on the whole dataset, so they are run over
samples extracted from the dataset.

The comparison shows that, on average, Tilde finds
more accurate theories in a smaller time.

The paper is organized as follows: section 2 presents
the field of ILP, section 3 describes the Sisyphus dataset, in
section 4 we illustrate the main feature of Aleph, in section
5 the Tilde system is presented, in section 6 we report on
the performed experiments, in section 7 we discuss related
works and finally in setcion 8 we conclude.

2 Inductive Logic Programming

ILP [9] is a research field at the intersection of Machine
Learning and Logic Programming. Its objective is the so-
lution of a learning problem where the language used for
describing both the instances and the concept to be learned
is logic programming. In particular, the main aim of ILP is
to devise algorithms that solve the following problem:
Given:

� a set E+ of positive examples (ground facts)

� a set E� of negative examples (ground facts)

� a backgroud knowledge B (logic program)

� a hypothesis spaceH described by a language bias L

Find: a logic program P 2 H such that

� 8e+ 2 E+; B [P j= e+

� 8e� 2 E�; B [P 6j= e�

Nowadays ILP is a mature field, many algorithms have
been proposed and they have been successfully applied to
many domains. Examples of ILP systems are FOIL [13],
Progol [10], Tilde [3] and Aleph [15]. ILP techniques
have been successfully applied to problems in engineering
[4, 6], natural language processing [11, 8], environmental
sciences [5, 2] and life sciences [14, 16].

Recently, ILP has been the subject of great interest due
to the fact that ILP techniques can be used for Data Mining
from relational databases. In fact, a relational database can
be seen as a Prolog program: each relation can be repre-
sented by a Prolog predicate and each tuple is represented
by a ground Prolog fact. In this way, ILP can be used
to mine knowledge from databases containing more than
one relation, differently from traditional Machine Learn-
ing techniques that require the data to be stored in a single
table.

3 The Sisyphus Dataset

The Sisyphus dataset was made available through the web
by the insurance company Swiss Life in 1998. It was sup-
posed to be the subject of a workshop in ECML98. The
workshop was later cancelled due to too few submissions.
The dataset was removed from the web a few years later
and now it is not publicly available. The dataset is interest-
ing due to its dimension.

The Sisyphus dataset is an extract of the data warehouse
of Swiss Life, and contains information regarding life in-
surances and pension schemas of its clients. The dataset
is multi-relational and is composed of 8 tables, for a total
of 336.266 tuples. The number of tuples and attributes of
each relation is indicated in table 1.

The table ‘part’ contains the data of all the clients (part-
ners). Tables ‘eadr’ and ‘padr’ describe respectively their
electronic and postal addresses. Each partner has a role in
one or more insurance policies (table ‘vvert’) that is de-
scribed in the table ‘parrol’. If the partner is the insured
person then the table ‘tfrol’ specifies further properties of

Table Tuples Attributes
vvert 34.986 18
parrol 111.077 5
part 17.267 8
eadr 505 3
padr 17.970 4
tfkomp 73.502 26
tfrol 73.332 8
taska 17.627 2

Total 336.266 74

Table 1: Tables of the Sisyphus Dataset.

the applied tariffs. An insurance contract can have many
components (e.g., a component in the case in which the in-
sured person becomes disabled). Each component (table
‘tfkomp’) is correlated with a record in the table ‘tfrol’ of
the respective partner. For this dataset, a class is assigned
to every partner, described in the ‘taska’ table .

A diagram describing the schema of the database is
shown in figure 1.

The dataset is distributed in the form of
Prolog facts, each record being of type:
table name(attribute1,...,attributen).
Every table is contained in a different file. In order to
reduce the dimension of the files, the table names have
been abbreviated by using a single letter. The dimensions
in bytes of the obtained files is indicated in table 2.

Table File dimension (bytes)
tfkomp 7,163,578
parrol 3,470,099
tfrol 2,852,867
vvert 2,504,030
part 512,154
padr 395,505
eadr 8,014
taska 239,004

Total 17,145,251

Table 2: Dimension of the Sisyphus dataset tables.

The dimension of the dataset is large if compared to
usual ILP datasets, that are of the order of a few hundred
Kilobytes. However, it is not so large for it not to be con-
tained in main memory of even an entry level personal
computer. The time required to load the whole database
(excluding table ‘taska’) into memory is 56.13 seconds
with Sicstus Prolog 3.11.0 and 13.17 seconds with Yap
Prolog 4.4.4, on a personal computer with a 1133 Mhz Pen-
tium III Mobile, 512 Mb of Ram and the Windows 2000
operating system.

4 Aleph

Aleph [15] implements a learning algorithm similar to Pro-
gol. It is a sequential covering algorithm (also called a sep-
arate and conquer algorithm) because it learns clauses one
by one and, at each step, it removes the positive examples
covered by the clause. The main cycle is the following

function Aleph(E+: pos. ex. ,E�: neg. ex. ,B: back. kn.)
P := 0

repeat /* covering cycle */
select one positive example e+i
build most specific clause ?i

C :=GenerateClause(?i; E
+; E�; B)

P := P [fCg

remove from E+ the positive examples covered by C
until E+

= ;

return P

The function GenerateClause returns a clause that is more
general than ?i and that covers a number of positive ex-
amples and no (or a few) negative examples.

The function GenerateClause searches the space of
clauses top-down, i.e., it starts from the most general
clause (p(X) if p is the predicate to be learned) and
gradually refines it by adding literals taken from ? i. The
search is performed by means of a branch and bound algo-
rithm.

function GenerateClause(?; E+; E�; B)

bestclause := anything; bestscore := �inf ; i := 0

active := fp(X) g

while active is not empty and i � n

/* specialization cycle */
remove the first clause D from active

let SD = fD1; : : : ; Dkg be the set of
specializations of D

compute the evaluation function hj for each
clause in SD

compute an upper bound uj of the evaluation
function for each clause in SD

for j := 1 to k
if uj � bestscore then

prune Dj

else
if Dj is a complete solution and

hj � bestscore then
bestclase := Dj ; bestscore := hj
prune nodes in active with upper bound

lower than hj
add Dj to active

i := i+ 1

until active = ; or i > n

return bestclause

The nodes in active are ordered according to a dual search
key. The value of this search key depends on the settings

Figure 1: Database schema of the Sisyphus Dataset.

imposed by the user for the search strategy and evaluation
function. For example, with breadth first as search strategy
and coverage for the evaluation function (the default set-
tings), the primary and secondary keys are respectively L

and P �N , where L is the number of literals in the clause,
P is the number of positive examples covered by the clause
and N is the number of negative examples covered by the
clause. This means that shorter clauses will be higher up
in active and, among clauses with equal length, those with
a higher difference P �N will be higher up.

The specialization of a clause D are obtained by using a
refinement operator. Aleph adopts as a default the refine-
ment operator of Progol that uses the most specific clause
? for selecting literals to be added to D. In this way it en-
sures that all the refinements will be more general than ?
and therefore will cover at least the positive example used
to generate?.

The computation of the upper bound depends on the
search strategy and evaluation function. In cases where no
upper bound can easily be obtained it is taken to be +inf ,
resulting in minimal pruning.

A solution is complete when it satisfies two constraints:
it has a minimum accuracy (number of positive examples
covered over the total number of examples covered, 0 by
default) and it covers a maximum number of negative ex-
amples (0 by default).

5 Tilde

Tilde solves a learning problem slightly different from the
typical ILP problem:
Given:

� a set E of examples (ground facts for a target predi-
cate p=n)

� an argument of p=n to be predicted (e.g. C in
p(X; C))

� a backgroud knowledge B (logic program)

� a hypothesis spaceH described by a language bias L

Find: a first order logical decision tree T 2 H such that

� T assigns to each example p(x; c) the class c.

A first order logical decision tree (FOLDT) is a binary de-
cision tree in which: (1) the internal nodes of the tree con-
tain a conjunction of literals (2) different internal nodes
may share variables under the following restriction: a vari-
able that is introduced in a node (which means it does not
occur in higher nodes) must not occur in the right branch
of that node.

An example of a FOLDT is:

machine(A,B)
worn(A,C) ?
+--yes: not_replaceable(C) ?
| +--yes: [sendback] [6.0/6.0]

| +--no: [fix] [6.0/6.0]
+--no: [ok] [3.0/3.0]

This tree can be interpreted as follows: we first test
whether a machine A has a part C that is worn. If so then
we test whether C is non repleaceable. If so then the class
of the machine (argument B) is sendback, otherwise it is
fix. If A does not have a part C that is worn, that the class
is ok.

We use the following notation: a FOLDT T is ei-
ther a leaf of class c, in which case we write T =

leaf (c), or it is an internal node with conjunction conj,
left child l and right child r, in which case we write
T = inode(conj; l; r).

A FOLDT can be used to classify an example p(x; C)

by using the following procedure:

function Classify(p(x; C): example)
C := true

N := root

while N 6= leaf(c) do
let N = inode(conj; left; right)

if fp(X) C ^ conjg [B j= p(x)

C := C ^ conj

N := left

else
N := right

return c

where x stands for a vector of constants and X stands for
a vector of variables of the same length.

A FOLDT can be used to classify an example also by
first translating the tree into an equivalent Prolog program.
For example, the equivalent program of the tree above is:

machine(A,sendback) :- worn(A,B),
not_replaceable(B), !.

machine(A,fix) :- worn(A,B), !.
machine(A,ok).

This program can then be used to classify an example
machine(a; C) by running the query machine(a; C) by
means of a Prolog interpreter over the database containing
the program above plus the background knowledge.

The translation is performed by means of the following
algorithm:

procedure DeriveLogicProgram(T : tree)
Associate(T; p(X; C); true)

procedure Associate(T : tree,p(X; C): target predicate,
Body: current body)

if T = inode(conj; left ; right) then
Associate(left ; p(X; C); (Body; conj))

Associate(right; p(X; C); Body)

else
let T = leaf (c)

assert p(X; c) Body; !

In practice each leaf generates a clause. The body of the
clause is generated by following the path from the root to
the leaf and by adding to the body the conjunction associ-
ated to a node if the left child of the node is on the path.

Tilde learns FOLDT by upgrading to a first order setting
the c4.5 [12] learning algorithm. Therefore it performs a
simultaneous covering algorithm: it does not try to cover
a number of examples in order to remove them from the
training set but it tries to cover all the examples at once.

The algorithm performs a standard recursive partitioning
approach and is shown below (we assume that p(X; C) is
the target predicate):

function Tilde(E: set of examples)
T :=GrowTree(E; true)
return Prune(T)

function GrowTree(E: set of examples, Q: query)
Qb := OptimalSplit(�(Q); E)

if StopCrit(Qb; E) then
return leaf (Info(E))

else
conj := Qb �Q

E1 := fe 2 EjB [fp(X; C) Qbg j= eg

E2 := fe 2 EjB [fp(X; C) Qbg 6j= eg

T := inode(conj;

GrowTree(E1; Qb);GrowTree(E2; Q)

return T

The function �(Q), given a conjunction Q, returns the set
of all the specializations of Q according to the refinement
operator. The function OptimalSplit, given a set of con-
junctions and a set of example E, returns the conjunction
that best discriminates the examples of the various classes.
The amount of discrimination is computed by using the
gain ratio heuristic function [12] of c4.5.

The function StopCrit evaluates the split of the examples
generated by Qb and decides whether it is the case of stop-
ping the tree growth. A typical case in which the growth
is stopped is when one of the sets obtained from the split
contains less than a predefined number of examples (2 by
default).

The function Info(E) returns the most common class in
the set of examples E.

The function Pune(T) returns the tree T after the same
pruning as in c4.5 is performed.

6 Experiments

We consider a learning task that consists in predicting the
class of the clients. The class is represented in table ‘taska’
and can assume the values:

� ‘0’: not applicable;

� ‘1’: belonging to the class of interests;

� ‘2’: not belonging to the class of interests;

We are particularly interested in correctly classifying
clients of class ‘1’.

The distribution of values is shown in table 3.

Class Examples %

1 10.723 62,10%
2 2.599 15,05%
0 3.945 22,85%

Total 17.267

Table 3: Class distribution in the Sisyphus dataset.

To this task we applied Aleph Aleph version 5 and Tilde
version 2.2. Aleph is implemented in Prolog and uses the
Yap Prolog compiler version 4.4.4. The implementation of
Tilde that has been used is the one contained in the ACE
suite of ILP systems version 1.2.6.

All the experiments have been performed on a personal
computer with a 1133 Mhz Pentium III Mobile, 512 Mb of
Ram and the Windows 2000 operating system.

No other transformation was necessary because the
dataset is already distributed as prolog facts directly usable
by Aleph and Tilde.

For Aleph, we decided to consider examples belong-
ing to class 1 as positive examples and those belonging
to classes 0 and 2 as negative, instead of opting for a sep-
arate classification of the three classes. The predicate to
be learned is therefore taska(X) where X is the iden-
tifier of the client. For Tilde, we learned the predicate
taska(X,C) where X is the identifier of the client and C
is the class. C is indicated as the argument to be predicted
by Tilde.

Let us now discuss the settings used for the experiments.
For Aleph we set i to 6, minpos to 2, clauselength to 8
and noise to 2. The parameter i indicates the maximum
depth of the new variables that can appear in the body of
clauses. minpos sets the minimum number of positive ex-
amples that a clause can cover in order to be added to the
current hypothesis. clauselength is the maximum num-
ber of literals that can be present in a clause. noise is the
maximum number of negative examples that a clause can
cover. All the other parameters assume their default value.

For Tilde each parameter assumes its default value.
The language bias that is used in both systems allows

the database relations to be chained according to the for-
eign key links represented in the database schema. More-
over, additional background predicates were used, namely
the binary relations equal (eq/2), smaller or equal than
(smeq/2) and greater or equal than (greq/2). These
predicates are intensionally defined in the background and
are used in order to compare the attributes of database re-
lations that are not keys (primary or foreign) with con-
stants. In particular, for nominal attributes, only the pred-
icate equal is used, while for numeric attributes (real or

integer) all the three predicates are used. The constants
that can appear as the second argument of these predicates
are taken from those appearing in the extensional database
relations.

For Tilde, it was necessary to specify also lookahead
statements. They are used by the refinement operator in
order to specialize the current node by adding a conjunc-
tion of literals instead of a single literal. In particular, with
the lookahead statements we force Tilde to add, besides
a database predicate, also a test on one of its arguments
(equal, smaller or equal and greater or equal).

Without these lookahead statements, Tilde would not be
able to learn because the addition of a database predicate
alone would not produce any improvement in the gain ra-
tio.

We tried to run the two systems over the whole dataset.
Unfortunately after more than 24 hours of CPU time there
was no answer from any of the two systems. As a conse-
quence, we decided to extract small random samples from
the whole dataset, to apply the algorithm to them and then
to average the results, in order to filter away variations due
to randomness.

We considered samples containing 360 partners. There-
fore, we have randomly selected 360 facts from the relation
taska. The remaining facts where included in the testing
set. The background knowledge of each sample has been
obtained by including in it all the facts that were related to
the chosen partners. Four samples were extracted.

The average dimension of the file containing just the ex-
amples is 5 Kilobytes. The average dimension of the file
containing the background knowledge is 490 Kilobytes.

The theory learned on the reduced dataset was tested on
the examples from the testing set. The background knowl-
edge used for testing was the complete database (excluding
the relation taska).

The average number of positive and negative examples
of the training and testing sets is reported in table 4

Examples Training Sets Test Sets
jE+j 222.5 62% 10,500.5 62%
jE�j 137.5 38% 6,406.5 38%
jEj 360 16907

Table 4: Example distribution for the experiments.

The parameters of the two systems were chosen by run-
ning repeatedly each system on one the sample with dif-
ferent parameter and by testing the learned theory on the
testing set. The parameters that gave the best results for
each system were chosen.

The results of experiments are compared in terms of ac-
curacy. Such a measure is defined as the number of posi-
tive test examples covered by the theory plus the number
of negative test examples not covered by the theory over
the total number of test examples.

The average learning times and accuracy obtained by
Aleph and Tilde on the four training and testing sets is
shown in table 5. In parentheses is indicated the standard
deviation.

Algorithm Av. Time (hours) Av. Accuracy (%)
Aleph 10.20 (3.29) 68.38% (2.61%)
Tilde 0.98 (0.07) 86.57% (0.84%)

Table 5: Average execution time and accuracy obtained by
applying Aleph and Tilde to the Sisyphus dataset (standard
deviation in parenthesis).

The testing time was 12.06 hours on average for the the-
ory learned by Aleph and 5.22 hours on average for the
theory learned by Tilde. Testing was performed using Yap
4.4.4.

Some of the clauses learned by Aleph are shown in fig-
ure 2. Part of one of the trees learned by Tilde are shown
in figure 3.

In order to test the theory learned by Tilde on the testing
set, we used the equivalent Prolog program. Moreover, in
order to compare the results of Tilde with those of Aleph,
we added to the equivalent Prolog program the following
clause

taska(X):-taska(X,Y),Y=1.

In this way, we could use testing sets composed of facts for
the taska(X) predicate.

The application of Aleph and Tilde to the Sisyphus
dataset shows that, even if the dataset can fit in main mem-
ory, the execution times are too large to apply the systems
to the whole dataset. This shows that the current limita-
tions of ILP systems regards the execution times rather
than the memory space. Even with a dataset that is 2 %
of the original dataset, the execution times are of the order
of a few hours.

The comparison between Aleph and Tilde over the con-
sidered sample shows that Tilde is superior both in terms
of the accuracy of the learned theory and of the execution
times.

7 Related Works

The application of data mining techniques to the Sisyphus
dataset has been the subject of [7]. This paper reports the
application of a number of propositional learning system
to the dataset. In order to apply propositional system to
Sisyphus, the dataset has been transformed into a proposi-
tional form, i.e., into a database containing a single table
where each original example is represented by a single row.
The paper does not describe the details of the proposition-
alization performed but the standard technique consists in
aggregating the attributes of the tables connected with the
example table by a many to one relationship. For example,
the table tfrol is connected by a many to one relationship

to the table parrol that in its turn is connected by a many
one relationship to the table taska. The attribute TRTE-
CEINAL of table tfrol is the age at contract agreement: in
the single table, for each client, the minimum, maximum
and average of this attribute for all the tuples related to the
client will be included.

In [7] the experimentation on the Sisyphus dataset was
performed by first removing the examples with class 0. In
this way, roughly 80% of the examples are positive and
20% are negative. Then the authors randomly split the ex-
amples in a training set containing 70% of the instances
and a testing set containing 30 % of the instances. The
accuracy obtained by a number of propositional learner is
shown in table 6. The AllPos algorithm is an algorithm

Algorithm Accuracy (%)
J48 89.7%
Naive Bayes 81.8%
Linear SVM 89.9%
WBCSVM 80.0%
OneR 83.4%
AllPos 80.5%

Table 6: Accuracy of propositional learner on the Sisyphus
dataset.

that classifies all the examples as positive.
The results can be compared with ours with caution for

two reasons. The first is that the authors use a dataset with
a different ratio of positive and negative examples. In fact,
by classifying all the examples as positive they get an accu-
racy of 80.5%, while we get an average accuracy of 62.1%.
The second is that propositionalization requires a manual
intervention in order to choose the different aggregating
functions to be applied, while ILP looks for interesting fea-
tures by using brute force.

[7] reports also the result of applying Tilde to the dataset
with the same settings (no 0 examples, 70% training, 30%
testing): the achieved accuracy is 94.7% (they do not report
execution time). The difference with our results is due to
two factors: the different experimental settings and the fact
that we do not have used the discretization feature of Tilde.

8 Conclusion

Sisyphus is an interesting data because of its size, that is
one order of magnitude larger than that of the average ILP
dataset.

To this dataset we have applied two state of the art ILP
systems: Aleph and Tilde. Aleph learns logic programs,
while Tilde learns first order logical decision trees.

The application of the two systems to the whole dataset
was impossible: after 24 hours of CPU time none of the
systems responded. Therefore we have applied the sys-
tems to samples from the dataset. We extracted four sam-
ples composed of 360 examples, we ran Aleph and Tilde

taska(A) :-
part(A,B,C,D,E,F,G,H), smeq(B,55), eq(G,2).

taska(A) :-
parrol(B,A,C,D,E), eq(E,1), tfrol(F,B,G,H,I,J,K,L), eq(H,32).

taska(A) :-
parrol(A,B,C,D,E,F,G,H), eq(D,1941).

Figure 2: Some of the rules learned by Aleph from one of the samples.

taska(A,B)
parrol(C,A,D,E,F),eq(E,11) ?
+--yes: parrol(G,A,H,I,J),eq(J,2) ?
| +--yes: [2] [11.0/11.0]
| +--no: tfkomp(L,D,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,A1,B1,C1,D1,E1,F1,G1,H1),eq(V,74) ?
| +--yes: [2] [4.0/4.0]
| +--no: parrol(J1,A,K1,L1,M1),eq(L1,17) ?
| +--yes: [2] [3.0/3.0]

....
+--no: [0] [92.0/92.0]

Figure 3: Part of the tree learned by Tilde from one of the samples.

on each sample and we averaged the results over the four
samples.

The results show that Tilde is both faster (around 1 hour
on average against around 10 hours) and more accurate
(86.57% against 68.38%). The speed of Tilde is not sur-
prising, since in building the tree it applies a greedy algo-
rithm for choosing the conjunction that gives the optimal
split: once a conjunction is selected, it is never retracted.
The difference in accuracy is instead surprising given that
in [1] Tilde is reported to have accuracy results that are
comparable (not superior) with those of FOIL and Progol.

In the future we plan to repeat the Tilde experiments ap-
plying the discretization algorithm that is available in the
system, in order to see whether the results of [7] can be
achieved.

REFERENCES

[1] H. Blockeel. Top-down Induction of First Order Log-
ical Decision Trees. PhD thesis, Department of Com-
puter Science, Katholieke Universiteit Leuven, 1998.

[2] Hendrik Blockeel, Saso Dzeroski, and Jasna Gr-
bovic. Simultaneous prediction of multiple chemi-
cal parameters of river water quality with tilde. In
J. Zytkow and J. Rauch, editors, Proceedings of the
Third European Conference on Principles of Data
Mining and Knowledge Discovery, volume 1704 of
Lecture Notes in Artificial Intelligence, pages 32–40.
Springer, September 1999.

[3] Hendrik Blockeel and Luc De Raedt. Top-down in-
duction of first order logical decision trees. Artificial
Intelligence, 101(1-2):285–297, June 1998.

[4] B. Dolšak and S. Muggleton. The application of
inductive logic programming to finite-element mesh
design. In S. Muggleton, editor, Inductive Logic Pro-
gramming, pages 453–472. Academic Press, 1992.

[5] S. Džeroski, H. Blockeel, B. Kompare, S. Kramer,
B. Pfahringer, and W. Van Laer. Experiments in pre-
dicting biodegradability. In S. Džeroski and P. Flach,
editors, Proceedings of the 9th International Work-
shop on Inductive Logic Programming, volume 1634
of Lecture Notes in Artificial Intelligence, pages 80–
91. Springer-Verlag, 1999.

[6] S. Džeroski, N. Jacobs, M. Molina, C. Moure,
S. Muggleton, and W. Van Laer. Detecting traffic
problems with ilp. In D. Page, editor, Proceedings of
the 8th International Conference on Inductive Logic
Programming, volume 1446 of Lecture Notes in Ar-
tificial Intelligence, pages 281–290. Springer-Verlag,
1998.

[7] Thomas Gärtner, Shaomin Wu, and Peter A. Flach.
Data mining on the sisyphus dataset: Evaluation and
integration of results. In Christophe Giraud-Carrier,
Nada Lavrač, and Steve Moyle, editors, Integrating
Aspects of Data Mining, Decision Support and Meta-
Learning, pages 69–80. ECML/PKDD’01 workshop
notes, September 2001.

[8] D. Kazakov. Combining LAPIS and WordNet for the
learning of LR parsers with optimal semantic con-
straints. In S. Džeroski and P. Flach, editors, Pro-
ceedings of the 9th International Workshop on In-
ductive Logic Programming, volume 1634 of Lec-

ture Notes in Artificial Intelligence, pages 140–151.
Springer-Verlag, 1999.

[9] S. Muggleton. Inductive logic programming. In Pro-
ceedings of the 1st Conference on Algorithmic Learn-
ing Theory, pages 43–62. Ohmsma, Tokyo, Japan,
1990.

[10] S. Muggleton. Inverse entailment and Progol. New
Generation Computing, Special issue on Inductive
Logic Programming, 13(3-4):245–286, 1995.

[11] S. Muggleton and M. Bain. Analogical prediction. In
S. Džeroski and P. Flach, editors, Proceedings of the
9th International Workshop on Inductive Logic Pro-
gramming, volume 1634 of Lecture Notes in Artificial
Intelligence, pages 234–244. Springer-Verlag, 1999.

[12] J. R. Quinlan. C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann, San Francisco, USA, 1988.

[13] J.R. Quinlan. Learning logical definitions from rela-
tions. Machine Learning, 5:239–266, 1990.

[14] A. Srinivasan, S. Muggleton, R.D. King, and M.J.E.
Sternberg. Mutagenesis: ILP experiments in a non-
determinate biological domain. In S. Wrobel, editor,
Proceedings of the 4th International Workshop on In-
ductive Logic Programming, volume 237 of GMD-
Studien, pages 217–232. Gesellschaft für Mathe-
matik und Datenverarbeitung MBH, 1994.

[15] Ashwin Srinivasan. Aleph, 2004.
http://web.comlab.ox.ac.uk/oucl/research/areas/
machlearn/Aleph/aleph toc.html.

[16] M. Turcotte, S.H. Muggleton, and M.J.E. Sternberg.
Application of inductive logic programming to dis-
cover rules governing the three-dimensional topol-
ogy of protein structure. In D. Page, editor, Pro-
ceedings of the 8th International Conference on In-
ductive Logic Programming, volume 1446 of Lec-
ture Notes in Artificial Intelligence, pages 53–64.
Springer-Verlag, 1998.

