2

Probabilistic Logic Programming
Languages

Various approaches have been proposed for combining logic programming
with probability theory. They can be broadly classibed into two categories:
those based on theistribution Semantic¢DS) [Sato, 1995] and those that
follow a Knowledge Base Model ConstructilBMC) approach.

For languages in the brst category, a probabilistic logic program without
function symbols debnes a probability distribution over normal logic pro-
grams (termegvorlds). To debne the probability of a query, this distribution is
extended to a joint distribution of the query and the worlds and the probability
of the query is obtained from the joint distribution by marginalization, i.e.,
by summing out the worlds. For probabilistic logic programs with function
symbols, the debnition is more complex, see Chapter 3.

The distribution over programs is debPned by encoding random choices
for clauses. Each choice generates an alternative version of the clause and
the set of choices is associated with a probability distribution. The various
languages that follow the DS differ in how the choices are encoded. In all
languages, however, choices are independent from each other.

In the KBMC approach, instead, a probabilistic logic program is a com-
pact way of encoding a large graphical model, either a BN or MN. In the
KBMC approach, the semantics of a program is debned by the method for
building the graphical model from the program.

2.1 Languages with the Distribution Semantics

The languages following DS differ in how they encode choices for clauses,
and how the probabilities for these choices are stated. As will be shown in
Section 2.4, they all have the same expressive power. This fact shows that
the differences in the languages are syntactic, and also justiPes speaking
of theDS.

41

42 Probabilistic Logic Programming Languages

2.1.1 Logic Programs with Annotated Disjunctions

In Logic Programs with Annotated Disjunctions (LPADs) [Vennekens et al.,
2004], the alternatives are expressed by means of annotated disjunctive heads
of clauses. Arannotated disjunctive claugg has the form

hiz:Viss oo hing 2V iny b Big, .0 Bimg
whereh, ..., hjy, are logical atomsh,...,bm, are logigal literals, and
I'i1,...,! in, are real numbers in the intervdl, 1ssuch that Eiol! ik OL

An LPAD is a bnite set of annotated disjunctive clauses.
Each world is obtained by selecting one atom from the head of each
grounding of each annotated disjunctive clause.

Example 12 (Medical symptoms D LPAD).The following LPAD models the
appearance of medical symptoms as a consequence of disease. A person may
sneeze if he has the 3u or if he has hay fever:

sneezingpX q: 0.7; null : 0.3! flupXq
sneezingpX g: 0.8; null : 0.2! hay_feverpX q
Jtuphol

hay_feverpbolm

The Prst clause can be read asXif has the Bu, theiX sneezes with prob-
ability 0.7 and nothing happens with probability 0.3. Similarly, the second
clause can be read as: X has hay fever, theX sneezes with probability 0.8
and nothing happens with probability 0.2. Here, and for the other languages
based on the distribution semantics, the atoull does not appear in the
body of any clause and is used to represent an alternative in which no atom
is selected. It can also be omitted obtaining

sneezingpX q: 0.7! flupX g
sneezingpX q: 0.8! hay_feverpX g
Jftupbotn

hay_feverpbolm

As can be seen from the example, LPADs encode in a natural way programs
representing causal mechanisms: Bu and hay fever are causes for sneezing,
which, however, is probabilistic, in the sense that it may or may not happen
even when the causes are present. The relationship between the DS, and
LPADs in particular, and causal reasoning is discussed in Section 2.8.

2.1 Languages with the Distribution Semantic43

2.1.2 ProbLog

The design of ProbLog [De Raedt et al., 2007] was motivated by the desire to
make the simplest probabilistic extension of Prolog. In ProbLog, alternatives
are expressed hyrobabilistic factsof the form

Voo f

where! ; P 10, 1sandf; is an atom, meaning that each ground instantiation
fi! of f; is true with probabilityl ; and false with probabilityl « ! ;. Each
world is obtained by selecting or rejecting each grounding of all probabilistic
facts.

Example 13 (Medical symptoms B ProbLog)Example 12 can be expressed
in ProbLog as:

sneezingpX q! flupX g flu_sneezingpX g

sneezingpX q! hay_feverpX q hay_fever_sneezingpX g
Jtupholy

hay_feverpholm

0.7 :: flu_sneezingpX g

0.8 :: hay_fever_sneezingpX g

2.1.3 Probabilistic Horn Abduction

Probabilistic Horn Abduction (PHA) [Poole, 1993b] and Independent Choice
Logic (ICL) [Poole, 1997] express alternatives by facts, caltisioint
statementshaving the form

disjoint prj1 : ! i1,...,an 3! in;Sq

where eaclay is a logical atom and eadhy a number inrQ, 1s such that

" kil ik O 1. Such a statement can be interpreted in terms of its ground
instantiations: for each substitutiéngrounding the atoms of the statement,
theaj ! s are random alternatives aagl! is true with probability! j . Each

world is obtained by selecting one atom from each grounding of each disjoint
statement in the program. In practice, each ground instantiation of a disjoint
statement corresponds to a random variable with as many values as the
alternatives in the statement.

44 Probabilistic Logic Programming Languages

Example 14 (Medical symptoms P ICL).Example 12 can be expressed in
ICL as:

sneezingpX q! flupX q flu_sneezingpX g

sneezingpX q! hay_feverpX g hay_fever_sneezingpX g
flupboly

hay_feverpbol

disjoint prflu_sneezingpX q: 0.7,null : 0.3sq
disjoint pthay_fever_sneezingpX g: 0.8, null : 0.2sq

In ICL, LPADs, and ProbLog, each grounding of a probabilistic clause is
associated with a random variable with as many values as alternatives/head
disjuncts for ICL and LPADs and with two values for ProbLog. The random
variables corresponding to different instantiations of a probabilistic clause are
independent and identically distributed (11D).

2.1.4 PRISM

The language PRISM [Sato and Kameya, 1997] is similar to PHA/ICL but
introduces random facts via the predicatsw{3 (multi-switch:

mswpSwitchName, Trialld, Valueg

The brst argument of this predicate isamdom switch namea term repre-
senting a set of discrete random variables; the second argument is an integer,
thetrial id; and the third argument represents a value for that variable. The
set of possible values for a switch is debPned by a fact of the form

valuespSwitchName, V1, . ..,VnSq

where SwitchName is again a term representing a switch name and each
v; is a term. Each ground paiSwitchName, Trialldqrepresents a distinct
random variable and the set of random variables associated with the same
switch are 1ID.

The probability distribution over the values of the random variables
associated wittbwitchName is dePned by a directive of the form

I set.swpSwitchName,r! 1,...,! nsQ

wherep; is the probability that variabl&witchName takes valuev;. Each
world is obtained by selecting one value for each trial id of each random
switch.

2.2 The Distribution Semantics for Programs Without Function Symbés

Example 15 (Coin tosses B PRISM)The modeling of coin tosses shows dif-
ferences in how the various PLP languages represent |1ID random variables.
Suppose that coig; is known not to be fair, but that all tossesafhave the
same probabilities of outcomes b in other words, each tassietaken from

a family of 1ID random variables. This can be represented in PRISM as

valuespcy, rhead, tail sq
I set_swpcy, r0.4, 0.6sq

Different tosses of; can then be identiped using tiwal id argument of
msw{3.

In PHA/ICL and many other PLP languages, each ground instantiation of
a disjoint/1 statement represents a distinct random variable, so that IID ran-
dom variables need to be represented through the statementOs instantiation
patterns: e.g.,

disjoint prcoinpey, TossNumber, headq: 0.4,
coinpcy, TossNumber, tail q: 0.6sq

In practice, the PRISM system acceptgasw{2 predicate whose atoms
do not contain the trial id and for which each occurrence in a program is
considered as being associated with a different new variable.

Example 16 (Medical symptoms B PRISM)Example 14 can be encoded in
PRISM as:

sneezingpX q! flupX g mswpflu_sneezingpX g 1qg

sneezingpX q! hay_feverpX g mswphay_fever_sneezingpX g 1g
Jlupbols

hay_feverpbolm

valuespflu_sneezingp.X g rl, 0sq
valuesphay_fever_sneezingpX ¢ rl, 0sq

I set.swpflu_sneezingp.X g r0.7,0.3sq

I set.swphay_fever_sneezingp.X g r0.8, 0.2sq

2.2 The Distribution Semantics for Programs Without
Function Symbols

We present brst the DS for the case of ProbLog as it is the language with
the simplest syntax. A ProbLog progrdmis composed by a set of normal

46 Probabilistic Logic Programming Languages

rulesR and a sef of probabilistic facts. Eacprobabilistic factis of the
form! ; :: f; where! ; P 10, 1sandf; is an atom, meaning that each ground
instantiationf;! of f; is true with probability! ; and false with probability
1« ! . Each world is obtained by selecting or rejecting each grounding of
each probabilistic fact.

An atomic choicdndicates whether groundirfd of a probabilistic fact
F O p::f is selected or not. It is represented with the trigild, k qwhere
k P t0, luandk O 1 means that the fact is selectéd® O that it is not. A
set" of atomic choices isonsistentf it does not contain two atomic choices
i, !,k gandef,!,j qwithk & j (only one alternative is selected for a ground
probabilistic fact). The functiononsistentp’ qreturns true if' is consistent.
A composite choick is a consistent set of atomic choices. The probability of
composite choice is

Pp'qO L 1!,
il 1gP pfil, OgP
A selectior# is a total composite choice, i.e., contains one atomic choice for
every grounding of every probabilistic fact. world wy is a logic program
that is identibed by a selectigh The worldwy is formed by including the
atom corresponding to each atomic chqgite, 1qof #.

The probability of a worldvy is P pwvgq O P p#g Since in this section we
are assuming programs without function symbols, the set of groundings of
each probabilistic fact is Pnite, and so is the set of worlls Accordingly,
for a ProbLog progran®, Wp O twy,...,Wnu Moreover,Ppwg is a
distribution over worlds: wPwp PPV O 1. We call sounda program
for which every world has a two-valued WFM. We consider here sound
programs, for non-sound ones, see Section 2.9.

Let g be a query in the form of a ground atom. We debne the conditional
probability of q given a worldw as:Ppgjwg O 1 if qis true inw and 0O
otherwise. Since the program is sougda:an be only true or false in a world.
The probability ofg can thus be computed by summing out the worlds from
the joint distributio%of the query@and the worlds:

PogO Pp,wgO PmlwePpvgO Ppwg (2.1)

w w w(q
This formula can also be used for computing the probability of a conjunction
., --.,0n Of ground atoms since the truth of a conjunction of ground atoms

lwith an abuse of notation, sometimes we #s¢o indicate the set containing the atoms
fis. The meaning df will be clear from the context.

2.2 The Distribution Semantics for Programs Without Function Symbé1s

in a world is well dePned. So we can compute the conditional probability
of a queryq given evidences in the form of a conjunction of ground atoms
€1,...,6n as
P, &g

Preq
We can also assign a probability to a qugryy debning a probability space.
SinceWs is Pnite, therpWp , PPWp qais a measurable space. For an element
$ PPpWp g dePnaupbqas

%)

g O Ppwg
wP$

Ppyleq O (2.2)

with the probability of a world® pvgdebned as above. Then its easy to see
thatpWVp , POWp g pgis a bnitely additive probability space.
Given a ground atorg, debne the functio® : Wp ,t 0,1luas

~ 1 ifw(g
Qpwag O 0 otherwise (2:3)
Since the set of events is the powerset, ti@hpe P PpwWpq for all
%" t 0,1uandQ is a random variable. The distribution & is debPned by
PpQ O 1q(PpQ O 0qis given byl « PpQ O 10 and we indicat® pQ O 1q
with Ppqg

We can now computB pggas

Ppog OupQ“*ptlugq Quptwiw PWe,w (qug O Ppnq

obtaining the same formula as Equation (2.1).

The distribution over worlds also induces a distribution over interpreta-
tions: given an interpretatioh, we can debne the conditional probability of
| given a worldw as:Pp |wg O 1is | is the model ofw (I (w) and O
otherwise. The distribution over interpretations is then given by a formula
similar to Equation (2.1):

R R 2
PAdgO Pp,wqO PplwePpvgO Ppwg (2.4)

w w I(w

We call the interpretationk for which P g # 0 possible modelbecause
they are models for at least one world.

48 Probabilistic Logic Programming Languages

Now debne the functioh: Wp ,t 0,1luas

~ 1 ifl (w
A g0 0 otherwise (2:5)
| “1pvg PPPWp gfor all %" t 0, 1usol is a random variable for probability
spacgWp , PPNp g pg The distribution o is debned by p O 1gand we
indicatePp O 1qwith Pp g
We can now computB p qas

Pp g Opp “*ptiugq Quptwlw PWp, | (wug O Ppaq

obtaining the same formula as Equation (2.4).

The probability of a querg can be obtained from the distribution over
interpretations by debning the conditional probabilitygafiven an interpre-
tationl asPpy|lq O1if I (gand O otherwise and by marginalizing the
interpretations obtaining

RZ @ %) @
PpaogO Pp,IqO PplgPPpqO PpgO Ppvg (2.6)
| | I(q 1(ql(w

So the probability of a query can be obtained by summing the probability of
the possible models where the query is true.

Example 17 (Medical symptoms B worlds B ProbLog)Consider the
program of Example 13. The program has four worlds

W1 Ot Wo Ot
flu_sneezingpholy
hay_fever_sneezingpboly hay_fever_sneezingpbolm
u u
Ppvig O 0.76 0.8 Ppvog O 0.36 0.8
W3 O t Wy O t

flu_sneezingpholy
u u
Ppvsg O 0.76 0.2 Ppnvag O 0.36 0.2
The querysneezingpbolyis true in three worlds and its probability

P psneezingpbolgg 00.76 0.8° 0.36 0.8° 0.76 0.20 0.94.

2.2 The Distribution Semantics for Programs Without Function Symbé

Note that the contributions from the two clauses are combined disjunctively.
The probability of the query is thus computed using the rule giving the
probability of the disjunction of two independent Boolean random variables:

Ppa_ bq OPpaq” Ppbg « PpagPpbg O 1« pl« Ppagaf« Ppg
In our case P psneezingpbolmg 00.7° 0.8« 0.7-0.8 O 0.94.
We now give the semantics for LPADs. A clause
CiOhiz:'i1;...;hin, 2V in, ! B1,...,bm,

stands for a set of probabilistic clauses, one for each ground instanttion
of C;. Each ground probabilistic clause represents a choice amomgrmal
clauses, each of the form

hlkI hl!'--!hmi
fork O 1...,n;. Moreover, another clause
null ' Ba,....0m,

I
is implicitly encoded which is associated with probability O 1« pix, ! .
So for LPAD P an atomic choiceis the selection of a head atom for a
groundingC;!; of a probabilistic claus€;, including the atormull. An
atomic choice is represented in this case by the tpgle!;, kg where!; is
a grounding substitution arldP t0, 1, ..., nju. An atomic choice represents
an equation of the fornX; Ok whereXj is a random variable associated
with Ci!;. The dePnition of consistent set of atomic choices, of composite
choices, and of the probability of a composite choice is the same as for
ProbLog. Again, aelectior# is a total composite choice (one atomic choice
for every grounding of each probabilistic clause). A selectioidentibes
a logic programwy (a world) that contains the normal clauses obtained by
selecting head atoilmy ! for each atomic choicgC;, !,k g

wg Ot phi ! Bi,...,bm,d[pCi,! kg P#,
CiOhil:!il;---;hini:!ini! hl,...,hmi,CiPPU

As for ProbLog, the probability ofv is P pwzq O P p#q O# eCit kare ! ik
the set of worldsVp O twy,...,Wyuis Pnite, and® pwqis a distribution
over worlds.

If gqis a query, we can debrepglwq as for ProbLog and again the
probability ofqis given by Equation (2.1)

50 Probabilistic Logic Programming Languages

Example 18 (Medical symptoms D worlds B LPAD)The LPAD of Exam-
ple 12 has four worlds:

W1 O t
sneezingpboly ! flupboly
sneezingpboly ! hay_feverpbolm
flupboly, hay_feverpboly

u
PpvigO 0.76 0.8
W» Ot
null ! flupboly

sneezingpboly ! hay_feverpbolm
flupboly, hay_feverpboly
u
Ppnvog O 0.36 0.8

W30t

sheezingpooly ! flupboly
null ! hay_feverpbolg

flupboly hay_feverpboly

Ppivsg O 0.76 0.2

Wy O t
null ! flupboly
null ! hay_feverpbolgy
flupboly hay_feverpboly
u

Pprvag O 0.36 0.2

sneezingpbolgis true in three worlds and its probability is

P psneezingpbolgg 00.76 0.8° 0.36 0.8° 0.76 0.20 0.94

2.3 Examples of Programs

In this section, we provide some examples of programs to better illustrate the
syntax and the semantics.

2.3 Examples of Programs51

Example 19 (Detailed medical symptoms B LPAD)The following LPAB
models a program that describe medical symptoms in a way that is slightly
more elaborated than Example 12:

strong _sneezingpX q: 0.3 ; moderate_sneezingpX g: 0.5!
flupX g
strong_sneezingpX q: 0.2 ; moderate_sneezingpX q: 0.6!
hay_feverpX g
Jflupbola,
hay_feverpbolg
Here the clauses have three alternatives in the head of which the
one associated with atomull is left implicit. This program has nine
worlds, the querystrong_sneezingpboly is true in bve of them, and
P pstrong _sneezingpbolzq O0.44.

Example 20 (Coin B LPAD). The coin example of [Vennekens et al., 2004]
is represented &s

headgCoinq: 1{2; tails pCoinq: 1{2!
tosspCoing & biasedCoing

headgxCoing: 0.6 ; tails pCoinq: 0.4!
tosspCoing biasedCoing

fair pCoing: 0.9; biasedCoing: 0.1.

tosspcoing

The prst clause states that, if we toss a coin that is not biased, it has equal
probability of landing heads and tails. The second states that, if the coin is
biased, it has a slightly higher probability of landing heads. The third states
that the coin is fair with probability 0.9 and biased with probability 0.1 and
the last clause states that we toss the coin with certainty. This program has
eight worlds, the querlgeadgcoingis true in four of them, and its probability

is 0.51.

Example 21 (Eruption ® LPAD). Consider this LPAB from Riguzzi and
Di Mauro [2012] that is inspired by the morphological characteristics of the
Italian island of Stromboli:

2http://cplint.eu/e/sneezing.pl
Shttp://cplint.eu/e/coin.pl
“http://cplint.eu/e/eruption.pl

http://cplint.eu/e/sneezing.pl
http://cplint.eu/e/coin.pl
http://cplint.eu/e/eruption.pl

52 Probabilistic Logic Programming Languages

C1 O eruption : 0.6 ; earthquake : 0.3 :- sudden energy._release,
fault rupture pX g

C, O suddenenergy.release: 0.7.

C3 O fault_rupture psouthwest_northeastq

C4 O fault_rupture peast westqg
The island of Stromboli is located at the intersection of two geological faults,
one in the southwestbnortheast direction, the other in the eastbwest direction,
and contains one of the three volcanoes that are active in Italy. This program
models the possibility that an eruption or an earthquake occurs at Stromboli.
If there is a sudden energy release under the island and there is a fault
rupture, then there can be an eruption of the volcano on the island with
probability 0.6 or an earthquake in the area with probability 0.3. The energy
release occurs with probability 0.7 and we are sure that ruptures occur in
both faults.

ClauseC; has two grounding<Z;! 1 with

I1 O tX {southwest_northeastu

andCy!, with R
I, O tX {eastwesty,

while clauseC, has a single groundin@,H . SinceC; has three head atoms
and C, two, the program ha8 6 36 2 worlds. The quergruption is true
in bve of them and its probability Bperuptionq ©0.6-0.6-0.7" 0.6-0.3-
0.7 0.6-0.1-0.7" 0.3-0.6-0.7" 0.1-0.6-0.7 O 0.588

Example 22 (Monty Hall puzzle B LPAD). The Monty Hall puzzle
[Baral et al., 2009] refers to the TV game show hosted by Monty Hall in
which a player has to choose which of three closed doors to open. Behind one
door, there is a prize, while behind the other two, there is nothing. Once the
player has selected the door, Monty Hall opens one of the remaining closed
doors which does not contain the prize, and then he asks the player if he
would like to change his door with the other closed door or not. The problem
of this game is to determine whether the player should switch. The following
program provides a solutich The prize is behind one of the three doors with
the same probability:

prizeplq: 1{3; prizep2q: 1{3; prizep3q: 1{3.
The player has selected door 1:

selectedolg

Shttp://cplint.eu/e/monty.swinb

http://cplint.eu/e/monty.swinb

2.3 Examples of Programs53

Monty opens door 2 with probability 0.5 and door 3 with probability 0.5 if the
prize is behind door 1:

opendoorp2q: 0.5; opendoorp3q: 0.5! prizeplg
Monty opens door 2 if the prize is behind door 3:

opendoorp2q ! prizep3g
Monty opens door 3 if the prize is behind door 2:

opendoorp3q! prizep2qg
The player keeps his choice and wins if he has selected a door with the prize:

win _keep! prizeplg
The player switches and wins if the prize is behind the door that he has not
selected and that Monty did not open:

win _switch ! prizep2q opendoorp3qg

win _switch ! prizep3q opendoorp2q
Querying win _keep and win _switch we obtain probability 1/3 and 2/3
respectively, so the player should switch. Note that if you change the proba-
bility distribution of Monty selecting a door to open when the prize is behind
the door selected by the player, then the probability of winning by switching
remains the same.

Example 23 (Three-prisoner puzzle B LPAD)The following prograrffrom
[Riguzzi et al., 2016a] encodes the three-prisoner puzzle. kn@ald and
Halpern [2003], the problem is described as:

Of three prisoners, b, andc, two are to be executed, batdoes

not know which. Thusa thinks that the probability thait will be
executed is 2/3 for P ta,b,a. He says to the jailer, OSince
either b or c is certainly going to be executed, you will give me
no information about my own chances if you give me the name of
one man, eitheb or ¢, who is going to be executed O But then, no
matter what the jailer says, naive conditioning lead$o believe
that his chance of execution went down from 2/3 to 1/2.

Each prisoner is safe with probability 1/3:
safepaq: 1{3; safepoq: 1{3; safepcq: L3.
If a is safe, the jailer tells that one of the other prisoners will be executed
uniformly at random:
tell _executeddq: 1{2; tell _executedxq: 1{2! safepag
Otherwise, he tells that the only unsafe prisoner will be executed:

Shttp://cplint.eu/eljail.swinb

http://cplint.eu/e/jail.swinb

54 Probabilistic Logic Programming Languages

tell _executedbq! safepcq

tell _executedxq! safepoq
The jailer speaks if he tells that somebody will be executed:

tell ! tell _executedp.g
a is safe after the jailer utterance if he is safe and the jailer speaks:

safe_after_tell : « safepaq tell.
By computing the probability afzfepagandsafe_after _tell, we get the same
probability of 1/3, so the jailer utterance does not change the probability of
of being safe.

We can see this also by considering conditional probabilities: the proba-

bility of safepaqgiven the jailer utteranceell is

. Ppsafepaq tellq . Ppsafe_after_tellq » L3 -
P psafepagtellg O Prellq (@] Prellq @] 1 0 1{3

because the probability eéll is 1.

Example 24 (Russian roulette with two guns B LPAD)The following
examplé models a Russian roulette game with two guns [Baral et al., 2009].
The death of the player is caused with probability 1/6 by triggering the left
gun and similarly for the right gun:

death: 1{6! pull _trigger pleft_gung

death: 1{6! pull _trigger pright _gung

pull _trigger pleft_gung

pull _trigger pright _gung
Querying the probability ofleath we gent the probability of the player of
dying.

Example 25 (Mendelian rules of inheritance B LPAD)Blockeel [2004]
presents a prografhthat encodes the Mendelian rules of inheritance of
the color of pea plants. The color of a pea plant is determined by a gene
that exists in two forms (alleles), purpl@, and white,w. Each plant
has two alleles for the color gene that reside on a couple of chromo-
somescg(X,N,A) indicates that plantX has alleleA on chromosome\.
The program is:

colorpX, white g! cgpX, 1, wg cgpX, 2, wg

colorpX, purpleq! cgpX, _A, pg

"http://cplint.eu/eftrigger.pl
8http://cplint.eu/e/mendel.pl

http://cplint.eu/e/trigger.pl
http://cplint.eu/e/mendel.pl

2.3 Examples of Programs55

cgpX, 1,Aq: 0.5; cgpX, 1,Bq: 0.5!
motherpY, Xq cgoY,1,AqgcgpY,2,Bg
copX, 2,Aq: 0.5; cogpX, 2,Bq: 05!
fatherpY, Xq cgpY,1,AqcgpY,2,Bg
motherpm, cq fatherg, cq
cgom, 1, wg cgam, 2,wg coef, 1,pg cgd, 2, wg
The facts of the program express thais the offspring ofm and f and
that the alleles ofm are ww and of f are pw. The disjunctive rules
encode the fact that an offspring inherits the allele on chromosome 1 from
the mother and the allele on chromosome 2 from the father. In particular,
each allele of the parent has a probability of 50% of being transmitted.
The debnite clauses faolor express the fact that the color of a plant is
purple if at least one of the alleles ig, i.e., that thep allele is domi-
nant. In a similar way, the rules of blood type inheritance can be written
in an LPADP.

Example 26 (Path probability ® LPAD). An interesting application of
PLP under the DS is the computation of the probability of a path
between two nodes in a graph in which the presence of each edge is
probabilistic'®;

pathpX, X g

pathpX,Y q! pathpX,Z g edgqZ,Y g

edggm, g: 0.3. edggb,@: 0.2. edgen,cq: 0.6.
This program, coded in ProbLog, was used in [De Raedt et al., 2007] for

computing the probability that two biological concepts are related in the
BIOMINE network [Sevon et al., 2006].

PLP under the DS can encode BNs Vennekens et al. [2004]: each value
of each random variable is encoded by a ground atom, each row of each CPT
is encoded by a rule with the value of parents in the body and the probability
distribution of values of the child in the head.

Example 27 (Alarm BN B LPAD). For example, the BN of Example 10
that we repeat in Figure 2.1 for readability can be encoded with the
programt!

®http://cplint.eu/e/bloodtype.pl
Ohttp://cplint.eu/e/path.swinb
Uhttp://cplint.eu/e/alarm.pl

http://cplint.eu/e/bloodtype.pl
http://cplint.eu/e/path.swinb
http://cplint.eu/e/alarm.pl

56 Probabilistic Logic Programming Languages

burg t f earthquake t f
0.1 | 09 02| 0.8

0.0
0.2
0.2
0.9

call
a=t
a=f

Figure 2.1 Example of a BN.

burgpq: 0.1; burgpfq: 0.9.

earthquakeptq: 0.2 ; earthquakepfq: 0.8.

alarmpq! burgpqg earthgpg

alarmpq: 0.8; alarmpfq: 0.2! burgptg earthgpfg
alarmpq: 0.8; alarmpfqg: 0.2! burgpfq earthgpq
alarmpqg: 0.1; alarmpfqg: 0.9! burgpfq earthgpfg
callpqg: 0.9; callpfq: 0.1! alarmpqg

callpg: 0.05; callpfg: 0.95! alarmpfg

2.4 Equivalence of Expressive Power

To show that all these languages have the same expressive power, we
discuss transformations among probabilistic constructs from the various
languages.

The mapping between PHA/ICL and PRISM translates each PHA/ICL
disjoint statement to a multi-switch declaration and vice versa in the
obvious way. The mapping from PHA/ICL and PRISM to LPADs trans-
lates each disjoint statement/multi-switch declaration to a disjunctive
LPAD fact.

The translation from an LPAD into PHA/ICL (brst shown in [Vennekens
and Verbaeten, 2003]) rewrites each claGsavith v variablesX

hi:!'q1;...;ha:!txq! B.

into PHA/ICL by addingn new predicateschoicg{v, ..., choicg, {vuand
a disjoint statement:

2.4 Equivalence of Expressive Poweb7

hy! B, choicej1pX g

h,! B, choice,pX g

disjoint prchoicg1pX q:! 1,...,choica, pXq:! nsq

For instance, the brst clause of the medical symptoms LPAD of Example 19
is translated to

strong _sneezingpX q! flupX g choicep1pX g
moderate_sneezingpX q: 0.5! flupX g choice2pX g
disjoint prchoice;1pX q: 0.3, choiceopX q: 0.5, choicers : 0.2sq

where the clausaull ! flu pX g choice;s. is omitted since null does not
appear in the body of any clause.

Finally, as shown in [De Raedt et al., 2008], to convert LPADs into
ProbLog, each claugg; with v variablesx

hi:!'1;...;hy:! ! B.

is translated into ProbLog by addimg« 1 probabilistic facts for predicates
tfifv,....fin{vu

hy! B1fi1p>T& B
ho! B,afijipXqgfipXqg

hn! B, afiipXq...,afin«1pXq
& : fiipX g

&n« 1 fin « lp>Tq-

where R

& O 1

N !
&2 (? 1« g/q \
- 3

& O pl« % gd« %q

In general
R |
& O

i« — .
j61PL < &

58 Probabilistic Logic Programming Languages

Note that while the translation into ProbLog introduces negation, the intro-
duced negation involves only probabilistic facts, and so the transformed
program will have a two-valued model whenever the original program does.

For instance, the brst clause of the medical symptoms LPAD of
Example 19 is translated to

strong _sneezingpX q! flupX g f11pX g
moderate_sneezingpX q: 0.5! flupX g af11pX g f12pX g

0.3:fppXg
0.71428571428 f1,pX g

2.5 Translation to Bayesian Networks

We discuss here how an acyclic ground LPAD can be translated to a BN.
Let us prst debne the acyclic property for LPADs, extending Debnition 4.
An LPAD is acyclicif an integer level can be assigned to each ground atom
so that the level of each atom in the head of each ground rule is the same and
is higher than the level of each atom in the body.

An acyclic ground LPADP can be translated to a BNgP g[Vennekens
et al., 2004]." pPqis built by associating each atoanin Bp with a binary
variablea with values true 1) and false @). Moreover, for each rul€; of the
following form

hi:!v1;...;hp:ty! by,...bn,8c....,8¢
in groundpP g we add a new variableh; (for Ochoice for rul€; O) to pPq
ch; hasby,..., by, c1,...,¢ as parents. The values foh; arehy, ..., h,

andnull, corresponding to the head atoms. The CPEhpfis

... | BO1,...,bhb 01 O00,...,00 | ...
Chi O hl 0.0 (] 0.0
ch, Oh, | 0.0 e 0.0
ch Onull | 1.0 1« inOl! i 1.0

that can be expressed as
$Hk I ifChiOhk,b01 C|OO
) . 1« -n:IHj if chi Onull,b; O1,..., a0o0
Ppehibr,....cq O g1 J if chy Onull, pb O1,....c 00q @7

0 otherwise

2.5 Translation to Bayesian Network$9

If the body is empty, the CPT fah; is

Chi O hl Y
Chn O hn |! n
ch; O null 1« inOl! i

Moreover, for each variable corresponding to atora P Bp, the parents are
all the variablesh; of rulesC; that havea in the head. The CPT fa is the
following deterministic table:

At least one parent equal & | Remaining columng
aol 1.0 0.0
aoo0 0.0 1.0

encoding the function
aOfphaqO + IFIXhi Pchaich Oa

0 otherwise

where ch, are the parents of. Note that in order to convert an LPAD
containing variables into a BN, its grounding must be generated.

Example 28 (LPAD to BN). Consider the following LPAP:

C; O a;:04:a,:03.

C, O a,:01:a3:0.2

Cs3 O a,:06:a5:04! aj.

C4 O as . 0.4! dp, ag.

Cs O a:03:a7:02! ay, as.
Its corresponding networkpP gis shown in Figure 1.7, where the CPT for
a, andchs are shown in Tables 2.1 and 2.2 respectively.

Table 2.1 Conditional probability table foa,
chy, chy az, az ai, as agz, az az, as
a, 01 1.0 0.0 1.0 1.0
az 00 0.0 1.0 0.0 0.0

Table 2.2 Conditional probability table foths

a2, as 11|10 01| 0,0
chs Ox6 | 0.3 0.0| 0.0 0.0
chs Ox7 | 02| 0.0| 00| 0.0
chs Onull | 05| 10| 1.0/ 1.0

60 Probabilistic Logic Programming Languages

ORO,
@0

(2

Figure 2.2 BN ! pP gequivalent to the program of Example 28.

An alternative translatio®gP qfor a ground prograr® is built by includ-
ing random variablea for each atorra in Bp andch; for each claus€; as
for ' pP g Moreover, %P gincludes the Boolean random varialledy; and
the random variablX; with valueshy, ..., h, andnull for each claus€;.

The parents obody; areby, ..., by, andcy, ..., ¢ and its CPT encodes
the deterministic AND Boolean function:

. | BBO1,...,8,b, 04, 00,...,q 00| ...
body, O0 | 1.0 0.0 1.0
body, O 1 | 0.0 1.0 0.0
If the body is empty, the CPT makesdy,; surely true
body, O0 | 0.0
body, 01 | 1.0

Xi has no parents and has the CPT

Chi (0] hl (]
ch Onull | 1« o,

ch; hasX; andbody, as parents with the deterministic CPT

body;,X; | O,hy | ... | O,hy | O,null | L,hy | ... | 1,hy | 1, null
chi O h; 00 |...| 00 0.0 1.0 | ... | 0.0 0.0
chi O hy 00 |...| 00 0.0 00 |...|] 1.0 0.0
chy Onull | 10 | ... | 10 1.0 00 |...| 00 1.0

2.5 Translation to Bayesian Network$1

Figure 2.3 Portion of" pP grelative to a claus€, .

encoding the function

. & Xi ifbody;, O1
chi O fppody,, Xiqa O i it pody, © 0

The parents of each varialkdein %P gare the variablesh; of rulesC; that
havea in the head as for pP g, with the same CPT as ingP g
The portion of%gP grelative to a claus€; is shown in Figure 2.3.

If we computeP pchi|by, ..., by, c1,. .., ggby marginalizing
P pchi, body;, Xi|by, ..., by, C1,...,00Q
we can see that we obtain the same dependency' g¥iq
Ppehi|by,...,cq O
Z%
0] P pchi, body;, xi|b, .. ., aq

8 b%yi
o P pchi [body; , xi P pxi P poody; [by, ..., &g
éj body ,
O Pp(lq thllbOdy|lXIq:)mOdy||b|.i1C|q
Xi body ; $
Q2 %) &1ifb0dyi(:)1,b101‘ QOQ
O Ppq Ppchi|bodyi,xiqo/ 1 if body; O0,$ph; O 1,...,¢ OO0q
X; body 0 otherwise
) @ & 1lifch Oxj,body; 01, O1,..., gOo0

O Pmxq o, 1 if chi O null, body; 0 0,$ph O 1,...,6 O 0g
X: body , O otherwise

62 Probabilistic Logic Programming Languages

Figure 2.4 BN " pP gequivalent to the program of Example 28.

$ R . .
I & 1ifch Oxi,bb01,...,q00

o} Xiquq%lifchi(‘)null, $pb 0 1,...,0 O0q

$ 0 otherwise
g!k' ifChiOhk,hO].,...,QOO
O 1« jnél!i ifchiOnuII,bi(Dl C OO
@ 1 if chy O null, $pg O 1,..., g O 0q
0 otherwise

which is the same as Equation (2.7).

From Figure 2.3 and using d-separation (see DePnition 17), we can see
that theX; variables are all pairwise unconditionally independent as between
every couple there is the collid&r; , ch; ! body;.

Figure 2.4 show&pP gfor Example 28.

2.6 Generality of the Distribution Semantics

The assumption of independence of the random variables associated with
ground clauses may seem restrictive. However, any probabilistic relationship
between Boolean random variables that can be represented with a BN can be

2.6 Generality of the Distribution Semantic$3

P(a(7))
O 1-— P1
1 P1

(1)

)
)

(4)

P(b(i)|a(i))

a(i) 0 1
b)) =0 | 1—p2 | 1—ps
b(i) =1 P2 P3

(N

a
[¢3

Figure 2.5 BN representing the dependency betwagimandbp g

modeled in this way. For example, suppose you want to model a general
dependency between the ground at@msjandbp gregarding predicates 1
andb{1 and constant. This dependency can be represented with the BN of
Figure 2.5.

The joint probability distributionP papiq bagqover the two Boolean
random variableap gandbapgis

Pp0,0g O @« pigd « p2q
PO,1g O @A« piamzq
Ppl,0g O pipl« psq
Ppl,1g O pips

This dependency can be modeled with the following LPAD

C:10 apqg:ps

C20 bpXq:py! apXg

C30 bXqg:ps!a apXq
We can associate Boolean random variablesvith C1, X, with Cot X {iu,
and X3 with Cst X {iu, whereX1, X», and X3 are mutually independent.
These three random variables generate eight woldgigq ~ $ baq for
example is true in the worlds

wi OH, w, Otbdqg! apqu
whose probabilities are

Plovig O [« pigi « poqgi « psq
Plwvag O f« prgd « paops

SO
Plp$apq $bpigqg O i« prgd« pagi« psg pl« pigd« pgps O PO, Og

We can prove similarly that the distributioRsandP * coincide for all joint
states ofhpqandbpg

64 Probabilistic Logic Programming Languages

P//(Xl) PN(X‘Z)
Xy=mnull | 1—p Xo=mnull | 1—ps
@ X1 = a(i) p1 X2 = b(i) D2

@Q@@ X3 = fljl/lll(lxs)l — Pp3
X3 = b(Z) pP3
(@) ()
o)

Figure 2.6 BN modeling the distribution oveap g bp g X1, X2, X3.

Modeling the dependency betwean gandba gwith the program above
is equivalent to represent the BN of Figure 2.5 with the netwiuR g of
Figure 2.6.

Since %P g debnes the same distribution Rs the distributions? and
P2, the one debned B¥pP g agree on the variablegigandbyig i.e.,

P pari g b qq OP ?papic, briqq
for any value ofjp qandbp g From Figure 2.6, itis also clear thdg, X», and
X3 are mutually unconditionally independent, thus showing that it is possible
to represent any dependency with independent random variables. So we can
model general dependencies among ground atoms with the DS.
This conbrms the results of Sections 2.3 and 2.5 that graphical models can

be translated into probabilistic logic programs under the DS and vice versa.
Therefore, the two formalisms are equally expressive.

2.7 Extensions of the Distribution Semantics

Programs under the DS may contdlexible probabilitiegDe Raedt and
Kimmig, 2015] or probabilities that depend on values computed during
program execution. In this case, the probabilistic annotations are variables,
as in the progradt from [De Raedt and Kimmig, 2015]

Lhttp://cplint.eu/e/Rexprob.pl

http://cplint.eu/e/flexprob.pl

2.7 Extensions of the Distribution Semantids5
red (Prob) :Prob.

draw_red (R, G) :-—
Prob is R/ (R + G),
red (Prob) .

The querydraw_red (r, g), Wherer andg are the number of green and
red balls in an urn, succeeds with the same probability as that of drawing a
red ball from the urn.

Flexible probabilities allow the computation of probabilities on the Ry
during inference. However, Rexible probabilities must be ground when their
value must be evaluated during inference. Many inference systems support
them by imposing constraints on the form of programs.

The body of rules may also contain literals for a meta-predicate such
asprob/2 that computes the probability of an atom, thus allowing nested
or meta-probability computations [De Raedt and Kimmig, 2015]. Among
the possible uses of such a feature De Raedt and Kimmig [2015] mention:
bltering proofs on the basis of the probability of subqueries, or implementing
simple forms of combining rules.

An example of the pbrst use'fs

a:0.2:-
prob (b, P),
P>0.1.

wherea succeeds with probability 0.2 only if the probability ofis larger
than 0.1.
An example of the latter {4

p(P) :P.

max_true (Gl, G2) :-
prob (Gl, P1l),
prob (G2, P2),
max (P1, P2, P), p(P).

wheremax_true (G1, G2) succeeds with the success probability of its
more likely argument.

Bhttp://cplint.eu/e/meta.pl
http://cplint.eu/e/metacomb.pl

http://cplint.eu/e/meta.pl
http://cplint.eu/e/metacomb.pl

66 Probabilistic Logic Programming Languages

2.8 CP-Logic

CP-logic [Vennekens et al., 2009] is a language for representing causal laws.
It shares many similarities with LPADs but specibcally aims at modeling
probabilistic causality. SyntacticallgP-logic programsor CP-theoriesare
identical to Ipad®: they are composed of annotated disjunctive clauses that
are interpreted as follows: for each grounding

hi:!'+;...;hm:!'h! B

of a clause of the progran®, represents an event whose effect is to cause at
most one of théh; atoms to become true and the probabilityhgfof being
caused i¢ j. Consider the following medical example.

Example 29 (CP-logic program B infection [Vennekens et al., 20098.
patient is infected by a bacterium. Infection can cause either pneumonia
or angina. In turn, angina can cause pneumonia and pneumonia can cause
angina. This can be represented by the CP-logic program:

angina : 0.2 ! pneumonia. (2.8)

pneumonia : 0.3 ! angina. (2.9)

pneumonia : 0.4 ; angina : 0.1 ! infection. (2.10)
infection. (2.11)

The semantics of CP-logic programs is given in terms of probability trees
that represent the possible courses of the events encoded in the program. We
consider prst the case where the program is positive, i.e., the bodies of rules
do not contain negative literals.

Definition 18 (Probability tree D positive case)A probability tre€® T for
a programP is a tree where every node is labeled with a two-valued
interpretationl pngand a probabilityP png T is constructed as follows:

¥ The root noder has probability Porg O 1.0 and interpretation
lprgq O H.
¥ Each inner node is associated with a ground clau§k such that

— no ancestor of is associated witlt;,
- all atoms inbodypC; gare true inl png,

There are versions of CP-logic that have a more general syntax but they are not essential
for the discussion here
18We follow here the debnition of [Shterionov et al., 2015] for its simplicity.

2.8 CP-Logic 67

n has one child node for each atdm P headdoCiqg Thek-th child has
interpretationl png Y thyuand probabilityP png 4 .
¥ No leaf can be associated with a clause following the rule above.

A probability tree debnes a probability distributiBipl gover the interpreta-
tion of the progranP : the probability of an interpretationis the sum of the
probabilities of the leaf nodessuch that O | png

The probability tree for Example 2.11 is shown in Figure 2.7. The
probability distribution over the interpretations is

I tinf, pn,angu | tinf, pnu | tinf,angu | tinfu
Poq 0.11 0.32 0.07 0.5

There can be more than one probability tree for a program but Vennekens
et al. [2009] show that all the probability trees for the program debne the
same probability distribution over interpretations. So we can spedkeof
probability tree folP and this delPnes the semantics of the CP-logic program.
Moreover, each program has at least one probability tree.

Vennekens et al. [2009] also show that the probability distribution debPned
by the LPADs semantics is the same as that debned by the CP-logic seman-
tics. So probability trees represent an alternative debnition of the DS for
LPADs.

If the program contains negation, checking the truth of the body of a
clause must be made with care because an atom that is currently absent from
| ng may become true later. Therefore, we must make sure that for each
negative literald a in bodypCiq the positive literala cannot be made true
starting froml png

Example 30 (CP-logic program B pneumonia [Vennekens et al., 2009)).
patient has pneumonia. Because of pneumonia, the patient is treated. If the
patient has pneumonia and is not treated, he may get fever.

%]

C]aust 211
1

{inf}

Clausg 2.10
/ 0-'I \
{inf}

{inf, pn} {inf,ang} 0.5
ﬂuez\\ /due\ﬂ)\‘
0.
{inf, pn anq} {7,7Lf pn} {inf, anq pn} {17Lf anq}

Flgure 2.7 Probability tree for Example 2.11. From [Vennekens et al., 2009].

68 Probabilistic Logic Programming Languages

pneumonia. (2.12)
treatment : 0.95! pneumonia. (2.13)
fever : 0.7 ! pneumonia, atreatment. (2.14)

Two probability trees for this program are shown in Figures 2.8 and 2.9. Both
trees satisfy Debnition 18 but debne two different probability distributions.
In the tree of Figure 2.8, Clause 2.14 has negative litérdeatment in its
body and is applied at a stage whereatment may still become true, as
happens in the level below.

In the tree of Figure 2.9, instead Clause 2.14 is applied when the only
rule for treatment has already bred, so in the right child of the node at the
second levetreatment will never become true and Clause 2.14 can safely
be applied.

In order to formally debne this, we need the following debnition that uses
three-valued logic. A conjunction in three-valued logic is true or undebned if
no literal in it is false.

%]
Clausg 2.12
1
{pn}
lause 2.1
0.7 0.3
{pn, fur} {pn}
Clduse 2\ 3 Clduse 2\3
0.95 0.05 0.95 0.05
{pn, for, tr} {pn, for} {pn,tr} {pn}
0.665 0.035 0.0285 0.015

Figure 2.8 An incorrect probability tree for Example 30. From [Vennekens et al., 2009].

(%]
Clausg 2.12
1
{pn}
lause 2.13
0.95 0.05
ntr
{p0.§5 ¢ {pn}
Clduse 2N 4
{pn, for} {pn}
0.035 0.015

Figure 2.9 A probability tree for Example 30. From [Vennekens et al., 2009].

2.8 CP-Logic 69

Definition 19 (Hypothetical derivation sequenceA hypothetical derivation
sequencén a noden is a sequencf iy i1 n Of three-valued interpretations
that satisfy the following properties. Initially,o assigns false to all atoms
notinlpng For eachi # 0,1 1 O X1 1,|F;" 1y is obtained from ; O
X1, Eiyby considering a rul&k with bodypRqtrue or undebned ih; and
an atoma in its head that is false i . Thenlt; 1 O It 1 andlg; 1 O
g 1ztau.

Every hypothetical derivation sequence reaches the same limit. For ainode
in a probabilistic tree, we denote this unique limitlgmq It represents the
set of atoms that might still become true; in other words, all the atoms in the
false part ofl pngwill never become true and so they can be considered as
false.

The dePnition of probability tree of a program with negation becomes the
following.

Definition 20 (Probability tree B general casef probability treeT for a
programP is a tree

¥ satisfying the conditions of DePnition 18, and
¥ for each noden and associated claugg;, for each negative literadi a
in bodyCig a Pl withl pnq O, Igy.

All the probability trees according for the program according to DePnition 20
establish the same probability distribution over interpretations.

It can be shown that the set of false atoms of the limit of the hypothetical
derivation sequence is equal to the greatest bxpoint of the op&rafarse]
(see Debnition 2) with O xI png Hy andP a program that contains, for
each rule

hi:!tq1:;...;hm:!'n! B
of P, the rules
hy ! B.
hn ! B.

In other words, it ng O A1, |y andgfppOpFalsel q OF, thenlg O F.

In fact, for the body of a clause to be true or undebnéed i@ xI Ti lEi Y,
each positive literah must be absent fromg; and each negative literal
a a must be such tha is absent from 1 ;, which are the complementary
conditions in the debnition of the operat@p False pFag

70 Probabilistic Logic Programming Languages

On the other hand, the generation of a chifdof a noden using a rule
C; that adds an atoma to | pnq can be seen as part of an application of
Op Truelpmq. So there is a strong connection between CP-logic and the WFS.
In the trees of Figures 2.8 and 2.9, the childD tpnu of the root has
e O H, so Clause 2.14 cannot be appliedr@satment Rlg and the only
tree allowed by DePnition 20 is that of Figure 2.9.
The semantics of CP-logic satisbes these causality principles:

¥ The principle of universal causatiostates that all changes to the state
of the domain must be triggered by a causal law whose precondition is
satisbed.

¥ The principle of sufpbcient causatiostates that if the precondition to
a causal law is satisped, then the event that it triggers must eventually
happen.

and therefore the logic is particularly suitable for representing causation.
Moreover, CP-logic satisbes themporal precedence assumptitmat
states that a rul® will not Pre until its precondition is in its Pnal state. In
other words, a rule bres only when the causal process that determines whether
its precondition holds is fully Pnished. This is enforced by the treatment of
negation of CP-logic.
There are CP-logic programs that do not admit any probability tree, as the
following example shows.

Example 31 (Invalid CP-logic program [Vennekens et al., 2009]n a two-
player game, white wins if black does not win and black wins if white does
not win:

winpwhiteq ! & winpblackg (2.15)
winpblackg ! & winpwhiteq (2.16)

At the root of the probability tree for this program, both Clauses 2.15 and
2.16 have their body true but they cannot brel asfor the root isH . So

the root is a leaf where however two rules have their body true, thus violating
the condition of Debnition 18 that requires that leaves cannot be associated
with rules.

This theory is problematic from a causal point of view, as it is impossible to
debne a process that follows the causal laws. Therefore, we want to exclude
these cases and consider onglid CP-theories.

Definition 21 (Valid CP-theory). A CP-theory isvalid if it has at least one
probability tree.

2.9 Semantics for Non-Sound Programgél

The equivalence of the LPADs and CP-logic semantics is also carried to
the general case of programs with negation: the probability tree of a valid
CP-theory debnes the same distribution as that debPned by interpreting the
program as an LPAD.

However, there are sound LPADs that are not valid CP-theories. Recall
that a sound LPAD is one where each possible world has a two-valued WFM.

Example 32 (Sound LPAD D invalid CP-theory Vennekens et al. [2009]).
Consider the program

p:05;q9:05! .

rla p.

rla q.
Such a program has no probability tree, so it is not a valid CP-theory. Its
possible worlds are

tp! r;rld prla qu

and
tqg! r;rla pirl'a qu

that both have total WFMg,r, pu andtr, gqu, respectively, so the LPAD is
sound.
In fact, it is difpcult to imagine a causal process for this program.

Therefore, LPADs and CP-logic have some differences but these arise only
in corner cases, so sometimes CP-logic and LPADs are used as a synonyms.
This also shows that clauses in LPADs can be assigned in many cases a causal
interpretation.

The equivalence of the semantics implies that, for a valid CP-theory, the
leaves of the probability tree are associated with the WFMs of the possible
world obtained by considering all the clauses used in the path from the root to
the leaf with the head selected according to the choice of child. If the program
is deterministic, the only leaf is associated with the total-well founded model
of the program.

2.9 Semantics for Non-Sound Programs

In Section 2.2, we considered only sound programs, those for which every
world has a two-valued WFM. In this way, we avoid nhon-monotonic aspects
of the program and we deal with uncertainty only by means of probability

theory.

72 Probabilistic Logic Programming Languages

When a program is not sound in fact, assigning a semantics to probabilis-
tic logic programs is not obvious, as the next example shows.

Example 33 (Insomnia [Cozman and Ma&,12017]). Consider the program
sleepla work, ainsomnia.
work 'a sleep.
(:insomnia.
This program has two worldsy; containinginsomnia andw, not contain-
ing it. The prst has the single stable model and total WFM

I1 O tinsomnia, &sleep,aworku

The latter has two stable models

I, O tinsomnia, &sleep, worku
I3 O tinsomnia, sleep, aworku

and a WFMI > where insomnia is true and the other two atoms are
undebned.

If we ask for the probability ofleep the brst worldw1, with probability
(, surely doesnOt contribute. We are not sure instead what to do with the
second, asleepis included in only one of the two stable models and it is
undebned in the WFM.

To handle programs like the above, Hadjichristodoulou and Warren [2012]
proposed the WFS for probabilistic logic programs where a program debnes
a probability distribution over WFMs rather than two-valued models. This
induces a probability distribution over random variables associated with
atoms that are, however, three-valued instead of Boolean.

An alternative approach, tleeedal semanticBCozman and Maa, 2017],
sees such programs as debning a set of probability measures over the interpre-
tations. The name derives from the fact that sets of probability distributions
are often calledredal sets

The semantics considers programs syntactically equal to ProbLog (i.e.,
non-probabilistic rules and probabilistic facts) and generates worlds as in
ProbLog. The semantics requires that each world of the program has at least
one stable models. Such programs are caltsusistent

A program then debnes a set of probability distributions over the set of
all possible two-valued interpretations of the program. Each distrib@ion
the set is called arobability modeland must satisfy two conditions:

1. every interpretatioh for whichP p q # 0 must be a stable model of the
world wy that agrees witt on the truth value of the probabilistic facts;

2.9 Semantics for Non-Sound Programg3

2. the sum of the probabilities of the stable modelsaomust be equal
to Pp#q

A set of distributions is obtained because we do not Px how the probability
massP p#qg of a world wy is distributed over its stable models when there
is more than one. We indicate with the set of probability models and call
it the credal semanticef the program. Given a probability model, we can
compute the probability of a queryas for the Distribution Semantics (DS),
by summingP p gfor all the interpretations whereq s true.

In this case, given a quenry, we are interested in thlewer and upper
probabilitiesof q debned as

Ppg O Fl,ry; P pag
Ppag O supPpyq
PPP

If we are also given evidena Cozman and Maa[2017] debPndéower and
upper conditional probabilitiesis

P O inf P
Ppojeq ppp oo P

Pmleg O sup Ppyq
PPP,Ppeq" 0

and leave them undebned whepeg OOforallP PP.

Example 34 (Insomnia continued b [Cozman and kig2017]). Consider
again the program of Example 33. A probability model that assigns the
following probabilities to the models of the program

Pp1q O(
Pp2qO%il« (g
Ppsq O« Y%d« (q
for %P 10, 1s, satisbes the two conditions of the semantics, and thus belongs

to P. The elements ¢¥ are obtained by varyingo
Considering the quersieep we can easily see thRtpsleep O trueqO 0

andPpsleepO trueq O1« (.
With the semantics of [Hadjichristodoulou and Warren, 2012] instead,

we have .
Ppl1q O(
PpoqOl« (

74 Probabilistic Logic Programming Languages

SO . .
PsleepO trueq OO0
PpsleepO falseq O(
PpsleepO undefinedq O 1« (.

Example 35 (Barber paradox B [Cozman and Ma2017]). The barber
paradox was introduced by Russell [1967]. If the village barber shaves all,
and only, those in the village who donOt shave themselves, does the barber
shave himself?
A probabilistic version of this paradox can be encoded with the program
shavesiX,Y q! barbemX q villager pY g dshavesyY, Yqg
villager pag
barbembg
0.5 ::villager pg
and the quenghavegb, ln
The program has two worldsy, and w,, the brst not containing the
fact villager pog and the latter containing it. The Prst world has a single
stable model; O tvillager pag barberntqg shavegh, aquthat is also the
total WFM. In the latter world, the rule has an instance that can be simpliped
to shavegb, ly '8 shavegb, g Since it contains a loop through an odd
number of negations, the world has no stable model and the three-valued
WFM:

I, O tvillager pag barberpbg shavegb, ag & shavesm, ag & shavesma, bqu

So the program is not consistent and the credal semantics is not debned for it,
while the semantics of [Hadjichristodoulou and Warren, 2012] is still debPned
and would yield

P pshavesb, i Otrueq 00.5
P pshavesh, iy O undefinedq O 0.5

The WFS for probabilistic logic programs assigns a semantics to more
programs. However, it introduces the truth valuedebPnedhat expresses
uncertainty and, since probability is used as well to deal with uncertainty,
some confusion may arise. For example, one may ask what is the value of
p O true|e O undefined g If e O undefined means that we donOt know
anything aboue, thenPpy O true|e O undefined g should be equal to
Ppg O true gbut this is not true in general. The credal semantics avoids these
problems by considering only two truth values.

Cozman and Maa[2017] show that the sé is the set of all probability
measures that dominate an inPnitely monotone Choquet capacity.

2.9 Semantics for Non-Sound Programgb

An inPnitely monotone Choquet capadiya functionP from an algebra
on a seW to the real intervat0, 1ssuch that

1.PpNq Ol« PpHg O 1, and
2. forany$,,...,%, " ",

1] .
PpYi$iq % p«1d’t 1P pXipy $iq (2.17)

InPnitely monotone Choquet capacity is a generalization of Pnitely additive
probability measures: the latter are special cases of the brst where Equation
(2.17) holds with equality. In fact, the right member of Equation (2.17) is an
application of the inclusionbexclusion principle that gives the probability of
the union of non-disjoint sets. InPnitely monotone Choquet capacities also
appear as belief functions of DempsterbShafer theory [Shafer, 1976].

Given an inbnitely monotone Choquet capaéitywe can construct the
set of measureb pP qthat dominatd® as

DpPqOtP|@ P": Ppbqg %P pbqu

We say thaP generateghe credal seD pP gand we calD pP ganinbnitely
monoton credal sett is possible to show that the lower probability@fP g
is exactly the generating inPnitely monotone Choquet capaBiphg O
infpppppqPPEBG

InPnitely monotone credal sets are closed and convex. Convexity here
means that iP; andP, are in the credal set, th¢R ; "p 1« (P2 is alsoin
the credal set fo¢ P 10, 1s Given a consistent program, its credal semantics
is thus a closed and convex set of probability measures.

Moreover, given a quergl, we have

/] %]
Pmg O Pptq Ppag O Pp#q
WPW,AS pva#Jq WPW,AS pwgXJqaH

wherelq is the set of interpretations wheggs true andAS pwqis the set of
stable models of worlevy .
The lower and upper conditional probabilities of a quggre given by:

~ BM!Q:]
Ppileg O = (2.18)
Ppy, e Pps$q, e
Prgleq O — P& (2.19)

Ppy,eq” Pp$q, e

76 Probabilistic Logic Programming Languages

2.10 KBMC Probabilistic Logic Programming Languages

In this section, we present three examples of KBMC languages: Bayesian
Logic Programs (BLPs), CLP(BN), and the Prolog Factor Language (PFL).

2.10.1 Bayesian Logic Programs

BLPs [Kersting and De Raedt, 2001] use logic programming to compactly
encode a large BN. In BLPs, each ground atom represents a (not necessarily
Boolean) random variable and the clauses debne the dependencies between
ground atoms. A clause of the form

alag,...,an

indicates that, for each of its groundinpgas,...,and, a! hasai!, ...,

am! as parents. The domains and CPTs for the ground atom/random variables
are debned in a separate portion of the model. In the case where a ground
atoma! appears in the head of more than one claussrabining ruleis

used to obtain the overall CPT from those given by individual clauses.

For example, in the Mendelian genetics program of Example 25, the

dependency that gives the value of the color gene on chromosome 1 of a
plant as a function of the color genes of its mother can be expressed as

cg(X,1)mother(Y,X),ca(Y,1),cq(V,2).

where the domain of atoms built on predicetg?is { p,w} and the domain of
mother(Y,X)s Boolean. A suitable CPT should then be debned that assigns
equal probability to the alleles of the mother to be inherited by the plant.

Various learning systems use BLPs as the representation language: RBLP
[Revoredo and Zaverucha, 2002; Paes et al., 2005], PFORTE [Paes et al.,
2006], andScooBY [Kersting and De Raedt, 2008].

2.10.2 CLP(BN)

In a CLP(BN) program [Costa et al., 2003], logical variables can be random.
Their domain, parents, and CPTs are debned by the program. Probabilistic
dependencies are expressed by means of constraints as in Constraint Logic
Programming (CLP):

{ Var = Function with p(Values, Dist) }
{ Var = Function with p(Values, Dist, Parents) }

2.10 KBMC Probabilistic Logic Programming Languageg 7/

The Pbrst form indicates that the logical varialler is random with domain
Values and CPTDist but without parents; the second form debnes a
random variable with parents. In both formBunction is a term over
logical variables that is used to parameterize the random variable: a different
random variable is debned for each instantiation of the logical variables in
the term. For example, the following snippet from a school domain:

course_difficulty (CKey, Dif) :-
{ Dif = difficulty(CKey) with p([h,m,1],
[0.25, 0.50, 0.25]) 1.

debnes the random variakte £ with valuesh, m, and 1 representing the
difbculty of the course identibped bykey. There is a different random
variable for every instantiation afkey, i.e., for each course. In a similar
manner, the intelligencent of a student identibed byKey is given by

student_intelligence (SKey, Int) :-
{ Int = intelligence (SKey) with p([h, m, 1],
[0.5,0.4,0.17) 1.

Using the above predicates, the following snippet predicts the grade received
by a student when taking the exam of a course.

registration_grade (Key, Grade) :-
registration (Key, CKey, SKey),
course_difficulty (CKey, Dif),
student_intelligence (SKey, Int),
{ Grade = grade (Key) with p([’A",’B’",’C’",’'D'],
$ h/h h/m h/l m/h m/m m/1 1/h 1/m 1/1
(0.20,0.70,0.85,0.10,0.20,0.50,0.01,0.05,0.10,
/A/
.60,0.25,0.12,0.30,0.60,0.35,0.04,0.15,0.40,
/B/
.15,0.04,0.02,0.40,0.15,0.12,0.50,0.60,0.40,
/CI
.05,0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.107,
IDI
[Int,Dif]) }.

o

o°

o

o°

o

o\

o

o\

Here Grade indicates a random variable parameterized by the identiper
Key of a registration of a student to a course. The code states that there

78 Probabilistic Logic Programming Languages

is a different random variablerade for each studentOs registration in a
course and each such random variable has possible values’, * ‘B’ 7,
**c’’ and D’ ’. The actual value of the random variable depends on the
intelligence of the student and on the difbculty of the course, that are thus its
parents. Together with facts feegistration/3 such as

registration(r0,cl6,s0). registration(rl,cl0,s0).
registration(r2,c57,s0). registration(r3,c22,sl).

the code debnes a BN withGerade random variable for each registration.
CLP(BN) is implemented as a library of YAP Prolog. The library performs
guery answering by constructing the sub-network that is relevant to the query
and then applying a BN inference algorithm.

The unconditional probability of a random variable can be computed by
simply asking a query to the YAP command line.

The answer will be a probability distribution over the values of the logical
variables of the query that represent random variables, as in

?— registration_grade (r0,G).
p(G=a)=0.4115,

p (G=b)=0.356,
p(G=c)=0.16575,
p(G=d)=0.06675 2

Conditional queries can be posed by including in the query ground atoms
representing the evidence.

For example, the probability distribution of the grades of registration
given that the intelligence of the student is high s given by

?— regilstration_grade(r0,G),
student_intelligence (s0,h).
p(G=a)=0.6125,
p(G=b)=0.305,
p(G=c)=0.0625,
p(G=d)=0.02 ?

In general, CLP provides a useful tool for Probabilistic Logic Programming

(PLP), asis testibed by the proposals clp(pdf(Y)) [Angelopoulos, 2003, 2004]
and Probabilistic Constraint Logic Programming (PCLP) [Michels et al.,

2015], see Section 4.5.

2.10 KBMC Probabilistic Logic Programming Languageg9

2.10.3 The Prolog Factor Language

The PFL [Gomes and Costa, 2012] is an extension of Prolog for representing
prst-order probabilistic models.

Most graphical models such as BNs and MNs concisely represent a joint
distribution by encoding it as a set of factors. The probability of a set of
variablesX taking valuex can be expressed as the produch déctors as:

wherex; is a sub-vector ok on which thei-th factor depends and is the
normalization constant. Often, in a graphical model, the same factors appear
repeatedly in the network, and thus we can parameterize these factors in order
to simplify the representation.

A Parameterized Random Variables (PRVS) is a logical atom representing
a set of random variables, one for each of its possible ground instantiations.
We indicate PRV a¥, Y, ... and vectors of PRVs aX, Y, ...

A parametric factoror parfactor [Kisynski and Poole, 2009b] is a triple
xC,V,Fy whereC is a set of inequality constraints on parameters (logical
variables),V is a set of PRVs an# is a factor that is a function from the
Cartesian product of ranges of PRVs\Mno real values. A parfactor is also
represented ab pvq|C or FpVq if there are no constraints. A constrained
PRV is of the formV|C, whereV O ppX1,...,XnQgis a non-ground atom
andCis a set of constraints on logical variabl&s O tXy4,...,Xnu Each
constrained PRV represents the set of random variaBlesqfe P Cu, where
x is the tuple of constants«,...,Xnq Given a (constrained) PRV, we
useRV pvqto denote the set of random variables it represents. Each ground
atom is associated with one random variable, which can take any value in
rangepVqg

The PFL extends Prolog to support probabilistic reasoning with paramet-
ric factors. A PFL factor is a parfactor of the form

TypeF;) ; C

where Type refers to the type of the network over which the parfactor is
debnedl§jayesfor directed networks omarkov for undirected oneskF is a
sequence of Prolog goals each debning a PRV under the constraiithen
arguments of the factor). It is the set of all logical variables i, thenCis a

list of Prolog goals that impose bindings &u(the successful substitutions for

80 Probabilistic Logic Programming Languages

the goals irCare the valid values for the variablesli).) is the table debning

the factor in the form of a list of real values. By default, all random variables
are Boolean but a different domain may be debned. Each parfactor represents
the set of its groundings. To ground a parfactor, all variablds aife replaced

with the values permitted by constraint€GnT he set of ground factors debnes

a factorization of the joint probability distribution over all random variables.

Example 36 (PFL program). The following PFL program is inspired by the
workshop attributes problem of [Milch et al., 2008]. It models the organiza-
tion of a workshop where a number of people have been invitedies
indicates whether the workshop is successful enough to start a series of
related meetings whilattends (P) indicates whether person attends
the workshop.

This problem can be modeled by a PFL program such as

bayes series, attends(P); [0.51, 0.49, 0.49, 0.51];
[person (P)].

bayes attends (P), at(P,A); [0.7, 0.3, 0.3, 0.7];
[person (P),attribute (A)].

A workshop becomes a series because people attend. People attend the
workshop depending on the workshopOs attributes such as location, date,
fame of the organizers, etc. The probabilistic atem (P, A) represents
whether persom attends because of attribute

The brst PFL factor has the random variableseries and
attends (P) as arguments (both Boolean)).51,0.49,0.49,0.51]
as table and the listperson (P)] as constraint.

Since KBMC languages are debned on the basis of a translation to graphical
models, translations can be built between PLP languages under the DS and
KBMC languages. The brst have the advantage that they have a semantics
that can be understood in logical terms, without necessarily referring to an
underlying graphical model.

2.11 Other Semantics for Probabilistic Logic Programming

Here we brieRy discuss a few examples of PLP frameworks that donOt follow
the distribution semantics. Our goal in this section is simply to give the
Bavor of other possible approaches; a complete account of such frameworks
is beyond the scope of this book.

2.11 Other Semantics for Probabilistic Logic Programming1

2.11.1 Stochastic Logic Programs

Stochastic Logic Programs (SLPs) [Muggleton et al., 1996; Cussens, 2001]
are logic programs with parameterized clauses which debne a distribution
over refutations of goals. The distribution provides, by marginalization, a
distribution over variable bindings for the query. SLPs are a generalization
of stochastic grammars and hidden Markov models.

An SLPS is a debnite logic program where some of the clauses are of
the formp : C wherep P R,p % 0, andC is a debnite clause. L&ipSq
be the debnite logic program obtained by removing the probability labels. A
pure SLP is an SLP where all clauses have probability labelaoAnalized
SLP is one where probability labels for clauses whose heads share the same
predicate symbol sum to one.

In pure SLPs, each SLD derivation for a queyis assigned a real label
by multiplying the labels of each individual derivation step. The label of a
derivation step where the selected atom unibes with the head of glauSe
is pi. The probability of a successful derivation fragnis the label of the
derivation divided by the sum of the labels of all the successful derivations.
This forms a distribution over successful derivations frqm

The probability of an instantiatiog! is the sum of the probabilities of the
successful derivations that produgk It can be shown that the probabilities
of all the atoms for a predicatg that succeed impSqg sum to one, i.e.S
debnes a probability distribution over the success sgimhpSg

Inimpure SLPs, the unparameterized clauses are seen as non-probabilistic
domain knowledge acting as constraints. Derivations are identibed with the
set of the parameterized clauses they use. In this way, derivations that differ
only on the unparameterized clauses form an equivalence class.

In practice, SLPs debne probability distributions over the children of
nodes of the SLD tree for a query: a derivation step Vv that connects
nodeu with child nodev is assigned a probabilitl? prJug This induces a
probability distributions over paths from the root to the leaves of the SLD
tree and in turn over answers for the query.

Given their similarity with stochastic grammars and hidden Markov mod-
els, SLPs are particularly suitable for representing these kinds of models.
They differ from the DS because they debne a probability distribution over
instantiations of the query, while the DS usually dePnes a distribution over
the truth values of ground atoms.

82 Probabilistic Logic Programming Languages

Example 37 (Probabilistic context-free grammar B SLPY onsider the
probabilistic context free grammar:

0.2:S, aS

02:S, bs

03:S, a

03:S, b
The SLP

0.2 :spra]Rsq! spRg

0.2 :sphjRsq! spRg

0.3 : sprasq

0.3 : spibsq
debnes a distribution over the valuesSin spSqthat is the same as the
one debned by the probabilistic context-free grammar above. For example,
P pspra, bsgg 00.2 0.3 O 0.6 according to the program anB pabg O 0.2 -
0.3 O 0.6 according to the grammar.

Various approaches have been proposed for learning SLPs. Muggleton
[2000a,b] proposed to use an Inductive Logic Programming (ILP) system,
Progol [Muggleton, 1995], for learning the structure of the programs, and
a second phase where the parameters are tuned using a generalization of
relative frequency.

Parameters are also learned by means of optimization in failure-adjusted
maximization [Cussens, 2001; Angelopoulos, 2016] and by solving algebraic
equations [Muggleton, 2003].

2.11.2 ProPPR

ProPPR [Wang et al., 2015] is an extension of SLPs that that is related to
Personalized PageRank (PPR) [Page et al., 1999].

ProPPR extends SLPs in two ways. The brst is the method for computing
the labels of the derivation steps. A derivation step Vv is not simply
assigned the parameter associated with the clause used in the step. Instead,
the label of the derivation step,pv|ugis computed using a log-linear model
Ppv|ug9 exppwv 5 4, vqwherew is a vector of real-valued weights apd v
is a 0/1 vector of OfeaturesO that depend on the clause being used. The features
are user debned and the association between clauses and features is indicated
using annotations.

Example 38 (ProPPR program).The ProPPR program [Wang et al., 2015]

aboufpX,Z q! handLabeledaX,Z g # base
aboutpX,Z q! simpX,Y g aboutpY,Zqg # prop

2.12 Other Semantics for Probabilistic Logic83

simpX,Y q! link pX,Y g # sim, link
simpX,Y q! hasW ordpX, W g hasW ordpY, Wq

linkedBy pX,Y,W g # sim, word
linkedBy pX,Y,Wq # bypWV q

can be used to compute the topic of web pages on the basis of possible hand
labeling or similarity with other web pages. Similarity is dePned as well in a
probabilistic way depending on the links and words between the two pages.

Clauses are annotated with a list of atoms (indicated after the # symbol) that
may contain variables from the head of clauses. In the example, the third
clause is annotated with the list of atosisn, link while the last clause is
annotated by the atobypW g Each grounding of each atom in the list stands

for a different feature, so for exampdém, link , andbypsprinter gstand for

three different features. The vecfoy v is obtained by assigning value 1 to

the features associated with the atoms in the annotation of the clause used
for the derivation step ,, v and value O otherwise. If the atoms contain
variables, these are shared with the head of the clause and are grounded with
the values of the clause instantiation used in v.

So a ProPPR program is debPned by an annotated program plus values for
the weightswv. This annotation approach considerably increases the RBexibility
of SLP labels: ProPPR annotations can be shared across clauses and can
yield labels that depend on the particular clause grounding that is used by
the derivation step. An SLP is a ProPPR program where each clause has a
different annotation consisting of an atom without arguments.

The second way in which ProPPR extend SLPs consists in the addition of
edges to the SLD tree: an edge is added (a) from every solution leaf to itself;
and (b) from every node to the start node.

The procedure for assigning probabilities to queries of SLP can then
be applied to the resulting graph. The self-loop links heuristically upweight
solution nodes and the restart links make SLPOs graph traversal a PPR pro-
cedure [Page et al., 1999]: a PageRank can be associated with each node,
representing the probability that a random walker starting from the root
arrives in that node.

The restart links favor the results of short proofs: if the restart probability
is (for every nodeu, then the probability of reaching any node at deghth
bounded byl « (.

Parameter learning for ProPPR is performed in [Wang et al., 2015] by
stochastic gradient descent.

84 Probabilistic Logic Programming Languages

2.12 Other Semantics for Probabilistic Logics

In this section, we discuss semantics for probabilistic logic languages that are
not based on logic programming.

2.12.1 NilssonOs Probabilistic Logic

NilssonOs probabilistic logic [Nilsson, 1986] takes an approach for combining
logic and probability that is different from the DS: while the brst considers
sets of distributions, the latter computes a single distribution over possible
worlds. In NilssonQOs logic, mobabilistic interpretationPr debnes a prob-
ability distribution over the set of interpretatiotst2. The probability of a
logical formulaF according taPr, denotedP rp- g, is the sum of alPrpl g

such that P Int2 andl (F. A probabilistic knowledge bad¢ is a set of
probabilistic formulas of the forlk % p. A probabilistic interpretatiof® r
satisbes- % p iff PrpFq %p. Pr satisbes, or Pr is amodelof K, iff

Pr satispes alF % p PK. PrpFq %p is atight logical consequencef K

iff pis the inPmum oP rpF qin the set of all model®r of K. Computing

tight logical consequences from probabilistic knowledge bases can be done
by solving a linear optimization problem.

With NilssonOs logic, the consequences that can be obtained from logical
formulas differ from those of the DS. Consider a ProbLog program (see
Section 2.1) composed of the fadis4 :: cpag and 0.5 :: cpog and a
probabilistic knowledge base composedcpdq % 0.4 andcgg %0.5. For
the DS,Ppepag _ cpbaq ©0.7, while with NilssonOs logic, the lowgssuch
thatP rpcpaq _ cpogqg %o holds is 0.5. This difference is due to the fact that,
while NilssonOs logic makes no assumption about the independence of the
statements, in the DS, the probabilistic axioms are considered as indepen-
dent. While independencies can be encoded in NilssonOs logic by carefully
choosing the values of the parameters, reading off the independencies from
the theories becomes more difbcult.

However, the assumption of independence of probabilistic axioms does
not restrict expressiveness as shown in Section 2.6.

2.12.2 Markov Logic Networks

A Markov Logic Network (MLN) is a Prst-order logical theory in which each

sentence is associated with a real-valued weight. An MLN is a template for
generating MNs. Given sets of constants debning the domains of the logical
variables, an MLN debnes an MN that has a Boolean node for each ground

2.12 Other Semantics for Probabilistic Logic85

atom and edges connecting the atoms appearing together in a grounding of
a formula. MLNs follow the KBMC approach for debning a probabilistic
model [Wellman et al., 1992; Bacchus, 1993]. The probability distribution
encoded by an Markov Logic Network (MLN) is

1 a2
Pxq Ozepr Win; xqq
fiPM

wherex is a joint assignment of truth value to all atoms in the Herbrand base
(Pnite because of no function symbols),is the MLN, f; is thei-th formula

in M, w; is its weight,n;pxqgis the number of groundings of formula that

are satisbed ir, andZ is a normalization constant.

Example 39 (Markov Logic Network). The following MLN encodes a theory
on the intelligence of friends and on the marks people get:

1.5 Intelligent (x) => GoodMarks (x)
1.1 Friends(x,y) => (Intelligent (x)<=>
Intelligent (y))

The brst formula gives a positive weight to the fact that if someone is
intelligent, then he gets good marks in the exams he takes. The second formula
gives a positive weight to the fact that friends have similar intelligence: in
particular, the formula states that i andy are friends, therx is intelligent
if and only if y is intelligent, so they are either both intelligent or both not
intelligent.

If the domain contains two individuals, Anna and Bob, indicated with A
and B, we get the ground MN of Figure 2.10.

2.12.2.1 Encoding Markov Logic Networks with Probabilistic

Logic Programming
It is possible to encode MNs and MLNs with LPADs. The encoding is based
on the BN that is equivalent to the MN as discussed in Section 1.6: an MN

Friends(A,B)
Friends(B,A)

Figure 2.10 Ground Markov network for the MLN of Example 39.

Friends(A,A) Friends(B,B)

86 Probabilistic Logic Programming Languages

factor can be represented with an extra node in the equivalent BN that is
always observed. In order to model MLN formulas with LPADs, we can add
an extra atonctlausg pX qfor each formulaF; O w; C; wherew; is the
weight associated witl?; and X is the vector of variables appearing@j.
Then, when we ask for the probability of quargiven evidence, we have
to ask for the probability off givene” ce, whereceis the conjunction of the
groundings otlausg pX gfor all values ofi.

ClauseC; must be transformed into a Disjunctive Normal Form (DNF)
formulaCiy _ ..._ Cin,, where the disjuncts are mutually exclusive and the
LPAD should contain the clauses

clausepXq: e¥{pl” e*q! C;j

forallj in 1,...,nj, wherel™ e* % max,,) pxiq O maxt 1, é¢u. Similarly,
$ C;j must be transformed into a DNFj1_ ..._ Din, and the LPAD should
contain the clauses

clausepXq: 1{p1° €*q! D

foralll in1,...,mj.
Moreover, for each predicafn, we should add the clause

ppXq: 0.5.

to the program, assigniregpriori uniform probability to every ground atom.

Alternatively, if (is negative, e will be smaller than 1 and
maxy;) Xigq O 1. So we can use the two probability valugsand 1 with
the clauses

clausepXq:e*! Cj.
clausgpXq ! Dj .

This solution has the advantage that some clauses are non-probabilistic,
reducing the number of random variableq; lis positive in the formuld C ,
we can consider the equivalent formuld $C.

The transformation above is illustrated by the following example. Given
the MLN

1.5 Intelligent (x) => GoodMarks (x)
1.1 Friends(x,y) => (Intelligent (x)<=>Intelligent (y))

2.12 Other Semantics for Probabilistic Logic87

the brst formula is translated to the clauses:

clausel (X) :0.8175 :- \+intelligent (X) .

clausel (X):0.1824 :- intelligent (X),
\+good_marks (X) .

clausel (X):0.8175 :— intelligent (X),good_marks (X) .

where0.81750 e%{p1l" e“1°qand0.18240 1{pl " e“1>q
The second formula is translated to the clauses

7502 :— \+friends(X,Y).
7502 :- friends (X,Y),
intelligent (X),
intelligent (Y) .
clause2(X,Y):0.7502 :- friends(X,Y),
\+intelligent (X),
\+intelligent (Y) .
clause2 (X,Y):0.2497 :- friends(X,Y),
intelligent (X),
\+intelligent (Y) .
clause2(X,Y):0.2497 :- friends(X,Y),
\+intelligent (X),
intelligent (Y) .

clause2 (X,
clause?2 (X,

)

Y):0.
Y):0.

where0.75020 el}{p1" ellqand0.24970 1{pl" ellq
A priori we have a uniform distribution over student intelligence, good
marks, and friendship:

intelligent (_):0.5.
good_marks(_):0.5.
friends(_,_):0.5.

and there are two students:

student (anna) .
student (bob) .

We have evidence that Anna is friend with Bob and Bob is intelligent.
The evidence must also include the truth of all groundings ofcthese
predicates:

evidence_mln :- clausel (anna),clausel (bob),
clause2 (anna, anna), clause?2 (anna, bob),
clause? (bob, anna), clause2 (bob, bob) .

ev_intelligent_bob_friends_anna_bob :-
intelligent (bob), friends (anna,bob),
evidence_mln.

88 Probabilistic Logic Programming Languages

The probability that Anna gets good marks given the evidence is thus

Ppgood.marks (anna) |ev_intelligent _bob_friends_anna_bob(

while the prior probability of Anna getting good marks is given by
Ppgood.marks (anna) g

The probability resulting from the Prst query is higher © 0.733) than the
second queryR O 0.607), since it is conditioned to the evidence that Bob is
intelligent and Anna is his friend.

In the alternative transformation, the brst MLN formula is translated to:

clausel (X) :—- \+intelligent (X).
clausel (X):0.2231 :- intelligent (X), \+good_marks (X) .
clausel (X) :- intelligent (X), good_marks (X).

where0.22310 e« 1,

MLN formulas can also be added to a regular probabilistic logic program.
In this case, their effect is equivalent to a soft form of evidence, where certain
worlds are weighted more than others. This is the same as soft evidence in
Figaro [Pfeffer, 2016]. MLN hard constraints, i.e., formulas with an inPnite
weight, can instead be used to rule out completely certain worlds, those
violating the constraint. For example, given hard constr@irgquivalent to
the disjunctiorCi1 _ ..._ Cin,, the LPAD should contain the clauses

clausgpXq! C;j

for all j, and the evidence should contaitause pxq for all groundings
x of X. In this way, the worlds that violat€ are ruled out.

2.12.3 Annotated Probabilistic Logic Programs

In Annotated Probabilistic Logic Programming (APLP) [Ng and Subrah-
manian, 1992], program atoms are annotated with intervals that can be
interpreted probabilistically. An example rule in this approach is:

a:r0.750.85s! b:rl, 1sc:r0.50.75

that states that the probability afis betweerD.75and0.85if bis certainly
true and the probability af is betweer0.5 and0.75. The probability interval
of a conjunction or disjunction of atoms is dePned usingpabinatorto

2.12 Other Semantics for Probabilistic Logic89

construct the tightest bounds for the formula. For instance jsfannotated
with rlg, hgsande with rlg, hes the probability ofe” d is annotated with

rmaxp0, lq = le « 1g min phg, hegs

Using these combinators, an inference operator and Pxpoint semantics is
debned for positive Datalog programs. A model theory is obtained for
such programs by considering the annotations as constraints on acceptable
probabilistic worlds: an APLP thus describes a family of probabilistic worlds.

APLPs have the advantage that deduction is of low complexity, as the
logic is truth-functional, i.e., the probability of a query can be computed
directly using combinators. The corresponding disadvantages are that APLPs
may be inconsistent if they are not carefully written, and that the use of
the above combinators may quickly lead to assigning overly slack proba-
bility intervals to certain atoms. These aspects are partially addressed by
hybrid APLPs Dekhtyar and Subrahmanian [2000], which allow different
Ravors of combinators based on, e.g., independence or mutual exclusivity
of given atoms.

