
2
Probabilistic Logic Programming

Languages

Various approaches have been proposed for combining logic programming
with probability theory. They can be broadly classiÞed into two categories:
those based on theDistribution Semantics(DS) [Sato, 1995] and those that
follow a Knowledge Base Model Construction(KBMC) approach.

For languages in the Þrst category, a probabilistic logic program without
function symbols deÞnes a probability distribution over normal logic pro-
grams (termedworlds). To deÞne the probability of a query, this distribution is
extended to a joint distribution of the query and the worlds and the probability
of the query is obtained from the joint distribution by marginalization, i.e.,
by summing out the worlds. For probabilistic logic programs with function
symbols, the deÞnition is more complex, see Chapter 3.

The distribution over programs is deÞned by encoding random choices
for clauses. Each choice generates an alternative version of the clause and
the set of choices is associated with a probability distribution. The various
languages that follow the DS differ in how the choices are encoded. In all
languages, however, choices are independent from each other.

In the KBMC approach, instead, a probabilistic logic program is a com-
pact way of encoding a large graphical model, either a BN or MN. In the
KBMC approach, the semantics of a program is deÞned by the method for
building the graphical model from the program.

2.1 Languages with the Distribution Semantics

The languages following DS differ in how they encode choices for clauses,
and how the probabilities for these choices are stated. As will be shown in
Section 2.4, they all have the same expressive power. This fact shows that
the differences in the languages are syntactic, and also justiÞes speaking
of theDS.

41

42 Probabilistic Logic Programming Languages

2.1.1 Logic Programs with Annotated Disjunctions

In Logic Programs with Annotated Disjunctions (LPADs) [Vennekens et al.,
2004], the alternatives are expressed by means of annotated disjunctive heads
of clauses. Anannotated disjunctive clauseCi has the form

hi 1 : ! i 1 ; . . . ; hin i : ! in i ! bi 1, . . . , bim i

wherehi 1, . . . , hin i are logical atoms,bi 1, . . . , bim i are logical literals, and
! i 1, . . . , ! in i are real numbers in the intervalr0, 1ssuch that

! ni
kÒ1 ! ik Ò 1.

An LPAD is a Þnite set of annotated disjunctive clauses.
Each world is obtained by selecting one atom from the head of each

grounding of each annotated disjunctive clause.

Example 12 (Medical symptoms Ð LPAD).The following LPAD models the
appearance of medical symptoms as a consequence of disease. A person may
sneeze if he has the ßu or if he has hay fever:

sneezingpX q: 0.7 ; null : 0.3 ! flupX q.
sneezingpX q: 0.8 ; null : 0.2 ! hay feverpX q.
flupbobq.
hay feverpbobq.

The Þrst clause can be read as: ifX has the ßu, thenX sneezes with prob-
ability 0.7 and nothing happens with probability 0.3. Similarly, the second
clause can be read as: ifX has hay fever, thenX sneezes with probability 0.8
and nothing happens with probability 0.2. Here, and for the other languages
based on the distribution semantics, the atomnull does not appear in the
body of any clause and is used to represent an alternative in which no atom
is selected. It can also be omitted obtaining

sneezingpX q: 0.7 ! flupX q.
sneezingpX q: 0.8 ! hay feverpX q.
flupbobq.
hay feverpbobq.

As can be seen from the example, LPADs encode in a natural way programs
representing causal mechanisms: ßu and hay fever are causes for sneezing,
which, however, is probabilistic, in the sense that it may or may not happen
even when the causes are present. The relationship between the DS, and
LPADs in particular, and causal reasoning is discussed in Section 2.8.

2.1 Languages with the Distribution Semantics43

2.1.2 ProbLog

The design of ProbLog [De Raedt et al., 2007] was motivated by the desire to
make the simplest probabilistic extension of Prolog. In ProbLog, alternatives
are expressed byprobabilistic factsof the form

! i :: f i

where! i P r0, 1sandf i is an atom, meaning that each ground instantiation
f i ! of f i is true with probability! i and false with probability1 « ! i . Each
world is obtained by selecting or rejecting each grounding of all probabilistic
facts.

Example 13 (Medical symptoms Ð ProbLog).Example 12 can be expressed
in ProbLog as:

sneezingpX q ! flupX q,flu sneezingpX q.
sneezingpX q ! hay feverpX q, hay fever sneezingpX q.
flupbobq.
hay feverpbobq.
0.7 :: flu sneezingpX q.
0.8 :: hay fever sneezingpX q.

2.1.3 Probabilistic Horn Abduction

Probabilistic Horn Abduction (PHA) [Poole, 1993b] and Independent Choice
Logic (ICL) [Poole, 1997] express alternatives by facts, calleddisjoint
statements, having the form

disjoint prai 1 : ! i 1, . . . , ain : ! in i sq.

where eachaik is a logical atom and each! ik a number inr0, 1s such that! ni
kÒ1 ! ik Ò 1. Such a statement can be interpreted in terms of its ground

instantiations: for each substitution! grounding the atoms of the statement,
theaik ! s are random alternatives andaik ! is true with probability! ik . Each
world is obtained by selecting one atom from each grounding of each disjoint
statement in the program. In practice, each ground instantiation of a disjoint
statement corresponds to a random variable with as many values as the
alternatives in the statement.

44 Probabilistic Logic Programming Languages

Example 14 (Medical symptoms Ð ICL).Example 12 can be expressed in
ICL as:

sneezingpX q ! flupX q,flu sneezingpX q.
sneezingpX q ! hay feverpX q, hay fever sneezingpX q.
flupbobq.
hay feverpbobq.

disjoint prflu sneezingpX q: 0.7, null : 0.3sq.
disjoint prhay fever sneezingpX q: 0.8, null : 0.2sq.

In ICL, LPADs, and ProbLog, each grounding of a probabilistic clause is
associated with a random variable with as many values as alternatives/head
disjuncts for ICL and LPADs and with two values for ProbLog. The random
variables corresponding to different instantiations of a probabilistic clause are
independent and identically distributed (IID).

2.1.4 PRISM

The language PRISM [Sato and Kameya, 1997] is similar to PHA/ICL but
introduces random facts via the predicatemsw{3 (multi-switch):

mswpSwitchName,TrialId ,Valueq.

The Þrst argument of this predicate is arandom switch name, a term repre-
senting a set of discrete random variables; the second argument is an integer,
the trial id ; and the third argument represents a value for that variable. The
set of possible values for a switch is deÞned by a fact of the form

valuespSwitchName, rv1, . . . , vnsq.

whereSwitchName is again a term representing a switch name and each
vi is a term. Each ground pairpSwitchName,TrialIdq represents a distinct
random variable and the set of random variables associated with the same
switch are IID.

The probability distribution over the values of the random variables
associated withSwitchName is deÞned by a directive of the form

! set swpSwitchName, r! 1, . . . , ! nsq.

wherepi is the probability that variableSwitchName takes valuevi . Each
world is obtained by selecting one value for each trial id of each random
switch.

2.2 The Distribution Semantics for Programs Without Function Symbols45

Example 15 (Coin tosses Ð PRISM).The modeling of coin tosses shows dif-
ferences in how the various PLP languages represent IID random variables.
Suppose that coinc1 is known not to be fair, but that all tosses ofc1 have the
same probabilities of outcomes Ð in other words, each toss ofc1 is taken from
a family of IID random variables. This can be represented in PRISM as

valuespc1, rhead, tail sq.
! set swpc1, r0.4, 0.6sq

Different tosses ofc1 can then be identiÞed using thetrial id argument of
msw{3.

In PHA/ICL and many other PLP languages, each ground instantiation of
a disjoint/1statement represents a distinct random variable, so that IID ran-
dom variables need to be represented through the statementÕs instantiation
patterns: e.g.,

disjoint prcoinpc1,TossNumber , headq: 0.4,
coinpc1,TossNumber , tail q : 0.6sq.

In practice, the PRISM system accepts anmsw{2 predicate whose atoms
do not contain the trial id and for which each occurrence in a program is
considered as being associated with a different new variable.

Example 16 (Medical symptoms Ð PRISM).Example 14 can be encoded in
PRISM as:

sneezingpX q ! flupX q, mswpflu sneezingpX q, 1q.
sneezingpX q ! hay feverpX q, mswphay fever sneezingpX q, 1q.
flupbobq.
hay feverpbobq.

valuespflu sneezingp X q, r1, 0sq.
valuesphay fever sneezingp X q, r1, 0sq.
! set swpflu sneezingp X q, r0.7, 0.3sq.
! set swphay fever sneezingp X q, r0.8, 0.2sq.

2.2 The Distribution Semantics for Programs Without
Function Symbols

We present Þrst the DS for the case of ProbLog as it is the language with
the simplest syntax. A ProbLog programP is composed by a set of normal

46 Probabilistic Logic Programming Languages

rulesR and a setF of probabilistic facts. Eachprobabilistic factis of the
form ! i :: f i where! i P r0, 1sandf i is an atom1, meaning that each ground
instantiationf i ! of f i is true with probability! i and false with probability
1 « ! i . Each world is obtained by selecting or rejecting each grounding of
each probabilistic fact.

An atomic choiceindicates whether groundingf ! of a probabilistic fact
F Ò p :: f is selected or not. It is represented with the triplepf, !, k qwhere
k P t0, 1u andk Ò 1 means that the fact is selected,k Ò 0 that it is not. A
set" of atomic choices isconsistentif it does not contain two atomic choices
pf, !, k qandpf, !, j qwith k ä j (only one alternative is selected for a ground
probabilistic fact). The functionconsistentp" qreturns true if" is consistent.
A composite choice" is a consistent set of atomic choices. The probability of
composite choice" is

Pp" q Ò
"

pf i ,!, 1qP"

! i

"

pf i ,!, 0qP"

1 « ! i .

A selection# is a total composite choice, i.e., contains one atomic choice for
every grounding of every probabilistic fact. Aworld w# is a logic program
that is identiÞed by a selection#. The worldw# is formed by including the
atom corresponding to each atomic choicepf, !, 1qof #.

The probability of a worldw# is Ppw#q ÒPp#q. Since in this section we
are assuming programs without function symbols, the set of groundings of
each probabilistic fact is Þnite, and so is the set of worldsWP . Accordingly,
for a ProbLog programP, WP Ò t w1, . . . , wm u. Moreover,Ppwq is a
distribution over worlds:

!
wPWP

Ppwq Ò 1. We call sound a program
for which every world has a two-valued WFM. We consider here sound
programs, for non-sound ones, see Section 2.9.

Let q be a query in the form of a ground atom. We deÞne the conditional
probability of q given a worldw as: Ppq|wq Ò 1 if q is true in w and 0
otherwise. Since the program is sound,q can be only true or false in a world.
The probability ofq can thus be computed by summing out the worlds from
the joint distribution of the query and the worlds:

Ppqq Ò
Ø

w

Ppq, wq Ò
Ø

w

Ppq|wqPpwq Ò
Ø

w(q

Ppwq. (2.1)

This formula can also be used for computing the probability of a conjunction
q1, . . . , qn of ground atoms since the truth of a conjunction of ground atoms

1With an abuse of notation, sometimes we useF to indicate the set containing the atoms
f i s. The meaning ofF will be clear from the context.

2.2 The Distribution Semantics for Programs Without Function Symbols47

in a world is well deÞned. So we can compute the conditional probability
of a queryq given evidencee in the form of a conjunction of ground atoms
e1, . . . , em as

Ppq|eq Ò
Ppq, eq
Ppeq

(2.2)

We can also assign a probability to a queryq by deÞning a probability space.
SinceWP is Þnite, thenpWP , PpWP qqis a measurable space. For an element
$ PPpWP q, deÞneµp$qas

µp$q Ò
Ø

wP$

Ppwq

with the probability of a worldPpwqdeÞned as above. Then itÕs easy to see
thatpWP , PpWP q, µqis a Þnitely additive probability space.

Given a ground atomq, deÞne the functionQ : WP „ t 0, 1uas

Qpwq Ò
"

1 if w (q
0 otherwise

(2.3)

Since the set of events is the powerset, thenQ« 1p%q P PpWP q for all
%" t 0, 1u andQ is a random variable. The distribution ofQ is deÞned by
PpQ Ò 1q(PpQ Ò 0qis given by1« PpQ Ò 1q) and we indicatePpQ Ò 1q
with Ppqq.

We can now computePpqqas

Ppqq ÒµpQ« 1pt1uqq Òµptw|w PWP , w (quq Ò
Ø

w(q

Ppwq

obtaining the same formula as Equation (2.1).
The distribution over worlds also induces a distribution over interpreta-

tions: given an interpretationI , we can deÞne the conditional probability of
I given a worldw as:PpI |wq Ò 1 is I is the model ofw (I (w) and 0
otherwise. The distribution over interpretations is then given by a formula
similar to Equation (2.1):

PpI q Ò
Ø

w

PpI, w q Ò
Ø

w

PpI |wqPpwq Ò
Ø

I (w

Ppwq (2.4)

We call the interpretationsI for which PpI q # 0 possible modelsbecause
they are models for at least one world.

48 Probabilistic Logic Programming Languages

Now deÞne the functionI : WP „ t 0, 1uas

I pI q Ò
"

1 if I (w
0 otherwise

(2.5)

I « 1p%q PPpWP qfor all %" t 0, 1u soI is a random variable for probability
spacepWP , PpWP q, µq. The distribution ofI is deÞned byPpI Ò 1qand we
indicatePpI Ò 1qwith PpI q.

We can now computePpI qas

PpI q ÒµpI « 1pt1uqq Òµptw|w PWP , I (wuq Ò
Ø

I (w

Ppwq

obtaining the same formula as Equation (2.4).
The probability of a queryq can be obtained from the distribution over

interpretations by deÞning the conditional probability ofq given an interpre-
tation I asPpq|I q Ò 1 if I (q and 0 otherwise and by marginalizing the
interpretations obtaining

Ppqq Ò
Ø

I

Ppq, Iq Ò
Ø

I

Ppq|I qPpI q Ò
Ø

I (q

PpI q Ò
Ø

I (q,I (w

Ppwq (2.6)

So the probability of a query can be obtained by summing the probability of
the possible models where the query is true.

Example 17 (Medical symptoms Ð worlds Ð ProbLog).Consider the
program of Example 13. The program has four worlds

w1 Ò t w2 Ò t
flu sneezingpbobq.
hay fever sneezingpbobq. hay fever sneezingpbobq.

u u
Ppw1q Ò 0.7 ö 0.8 Ppw2q Ò 0.3 ö 0.8

w3 Ò t w4 Ò t

flu sneezingpbobq.
u u

Ppw3q Ò 0.7 ö 0.2 Ppw4q Ò 0.3 ö 0.2

The querysneezingpbobqis true in three worlds and its probability

Ppsneezingpbobqq Ò0.7 ö 0.8 ` 0.3 ö 0.8 ` 0.7 ö 0.2 Ò 0.94.

2.2 The Distribution Semantics for Programs Without Function Symbols49

Note that the contributions from the two clauses are combined disjunctively.
The probability of the query is thus computed using the rule giving the
probability of the disjunction of two independent Boolean random variables:

Ppa _ bq ÒPpaq ` Ppbq « PpaqPpbq Ò1 « p1 « Ppaqqp1 « Ppbqq.

In our case,Ppsneezingpbobqq Ò0.7 ` 0.8 « 0.7 ¬0.8 Ò 0.94.

We now give the semantics for LPADs. A clause

Ci Ò hi 1 : ! i 1 ; . . . ; hin i : ! in i ! bi 1, . . . , bim i

stands for a set of probabilistic clauses, one for each ground instantiationCi !
of Ci . Each ground probabilistic clause represents a choice amongni normal
clauses, each of the form

hik ! bi 1, . . . , bim i

for k Ò 1. . . , ni . Moreover, another clause

null ! bi 1, . . . , bim i

is implicitly encoded which is associated with probability! 0 Ò 1«
! ni

kÒ1 ! k .
So for LPAD P an atomic choiceis the selection of a head atom for a
groundingCi ! j of a probabilistic clauseCi , including the atomnull. An
atomic choice is represented in this case by the triplepCi , ! j , kq, where! j is
a grounding substitution andk P t0, 1, . . . , ni u. An atomic choice represents
an equation of the formXij Ò k whereXij is a random variable associated
with Ci ! j . The deÞnition of consistent set of atomic choices, of composite
choices, and of the probability of a composite choice is the same as for
ProbLog. Again, aselection# is a total composite choice (one atomic choice
for every grounding of each probabilistic clause). A selection# identiÞes
a logic programw# (a world) that contains the normal clauses obtained by
selecting head atomhik ! for each atomic choicepCi , !, k q:

w# Ò t phik ! bi 1, . . . , bim i q! |pCi , !, k q P#,
Ci Ò hi 1 : ! i 1 ; . . . ; hin i : ! in i ! bi 1, . . . , bim i , Ci PPu

As for ProbLog, the probability ofw# is Ppw#q ÒPp#q Ò
#

pCi ,! j ,kqP# ! ik ,
the set of worldsWP Ò t w1, . . . , wm u is Þnite, andPpwq is a distribution
over worlds.

If q is a query, we can deÞnePpq|wq as for ProbLog and again the
probability ofq is given by Equation (2.1)

50 Probabilistic Logic Programming Languages

Example 18 (Medical symptoms Ð worlds Ð LPAD).The LPAD of Exam-
ple 12 has four worlds:

w1 Ò t
sneezingpbobq ! flupbobq.
sneezingpbobq ! hay feverpbobq.
flupbobq. hay feverpbobq.

u
Ppw1q Ò 0.7 ö 0.8

w2 Ò t
null ! flupbobq.
sneezingpbobq ! hay feverpbobq.
flupbobq. hay feverpbobq.

u
Ppw2q Ò 0.3 ö 0.8

w3 Ò t
sneezingpbobq ! flupbobq.
null ! hay feverpbobq.
flupbobq. hay feverpbobq.

u
Ppw3q Ò 0.7 ö 0.2

w4 Ò t
null ! flupbobq.
null ! hay feverpbobq.
flupbobq. hay feverpbobq.

u
Ppw4q Ò 0.3 ö 0.2

sneezingpbobqis true in three worlds and its probability is

Ppsneezingpbobqq Ò0.7 ö 0.8 ` 0.3 ö 0.8 ` 0.7 ö 0.2 Ò 0.94

2.3 Examples of Programs

In this section, we provide some examples of programs to better illustrate the
syntax and the semantics.

2.3 Examples of Programs51

Example 19 (Detailed medical symptoms Ð LPAD).The following LPAD2

models a program that describe medical symptoms in a way that is slightly
more elaborated than Example 12:

strong sneezingpX q: 0.3 ; moderate sneezingpX q: 0.5 !
flupX q.

strong sneezingpX q: 0.2 ; moderate sneezingpX q: 0.6 !
hay feverpX q.

flupbobq.
hay feverpbobq.

Here the clauses have three alternatives in the head of which the
one associated with atomnull is left implicit. This program has nine
worlds, the querystrong sneezingpbobq is true in Þve of them, and
Ppstrong sneezingpbobqq Ò0.44.

Example 20 (Coin Ð LPAD). The coin example of [Vennekens et al., 2004]
is represented as3:

headspCoinq: 1{2 ; tails pCoinq: 1{2 !
tosspCoinq, ã biasedpCoinq.

headspCoinq: 0.6 ; tails pCoinq: 0.4 !
tosspCoinq, biasedpCoinq.

fair pCoinq: 0.9 ; biasedpCoinq: 0.1.
tosspcoinq.

The Þrst clause states that, if we toss a coin that is not biased, it has equal
probability of landing heads and tails. The second states that, if the coin is
biased, it has a slightly higher probability of landing heads. The third states
that the coin is fair with probability 0.9 and biased with probability 0.1 and
the last clause states that we toss the coin with certainty. This program has
eight worlds, the queryheadspcoinqis true in four of them, and its probability
is 0.51.

Example 21 (Eruption Ð LPAD). Consider this LPAD4 from Riguzzi and
Di Mauro [2012] that is inspired by the morphological characteristics of the
Italian island of Stromboli:

2http://cplint.eu/e/sneezing.pl
3http://cplint.eu/e/coin.pl
4http://cplint.eu/e/eruption.pl

http://cplint.eu/e/sneezing.pl
http://cplint.eu/e/coin.pl
http://cplint.eu/e/eruption.pl

52 Probabilistic Logic Programming Languages

C1 Ò eruption : 0.6 ; earthquake : 0.3 :- sudden energy release,
fault rupture pX q.

C2 Ò sudden energy release : 0.7.
C3 Ò fault rupture psouthwest northeastq.
C4 Ò fault rupture peast westq.

The island of Stromboli is located at the intersection of two geological faults,
one in the southwestÐnortheast direction, the other in the eastÐwest direction,
and contains one of the three volcanoes that are active in Italy. This program
models the possibility that an eruption or an earthquake occurs at Stromboli.
If there is a sudden energy release under the island and there is a fault
rupture, then there can be an eruption of the volcano on the island with
probability 0.6 or an earthquake in the area with probability 0.3. The energy
release occurs with probability 0.7 and we are sure that ruptures occur in
both faults.

ClauseC1 has two groundings,C1! 1 with

! 1 Ò t X {southwest northeastu

andC1! 2 with
! 2 Ò t X {east westu,

while clauseC2 has a single groundingC2H . SinceC1 has three head atoms
andC2 two, the program has3 ö 3 ö 2 worlds. The queryeruption is true
in Þve of them and its probability isPperuption q Ò0.6¬0.6¬0.7` 0.6¬0.3¬
0.7 ` 0.6 ¬0.1 ¬0.7 ` 0.3 ¬0.6 ¬0.7 ` 0.1 ¬0.6 ¬0.7 Ò 0.588.

Example 22 (Monty Hall puzzle Ð LPAD). The Monty Hall puzzle
[Baral et al., 2009] refers to the TV game show hosted by Monty Hall in
which a player has to choose which of three closed doors to open. Behind one
door, there is a prize, while behind the other two, there is nothing. Once the
player has selected the door, Monty Hall opens one of the remaining closed
doors which does not contain the prize, and then he asks the player if he
would like to change his door with the other closed door or not. The problem
of this game is to determine whether the player should switch. The following
program provides a solution5. The prize is behind one of the three doors with
the same probability:

prizep1q: 1{3 ; prizep2q: 1{3 ; prizep3q: 1{3.
The player has selected door 1:

selectedp1q.

5http://cplint.eu/e/monty.swinb

http://cplint.eu/e/monty.swinb

2.3 Examples of Programs53

Monty opens door 2 with probability 0.5 and door 3 with probability 0.5 if the
prize is behind door 1:

open doorp2q: 0.5 ; open doorp3q: 0.5 ! prizep1q.
Monty opens door 2 if the prize is behind door 3:

open doorp2q ! prizep3q.
Monty opens door 3 if the prize is behind door 2:

open doorp3q ! prizep2q.
The player keeps his choice and wins if he has selected a door with the prize:

win keep! prizep1q.
The player switches and wins if the prize is behind the door that he has not
selected and that Monty did not open:

win switch ! prizep2q, open doorp3q.
win switch ! prizep3q, open doorp2q.

Querying win keep and win switch we obtain probability 1/3 and 2/3
respectively, so the player should switch. Note that if you change the proba-
bility distribution of Monty selecting a door to open when the prize is behind
the door selected by the player, then the probability of winning by switching
remains the same.

Example 23 (Three-prisoner puzzle Ð LPAD).The following program6 from
[Riguzzi et al., 2016a] encodes the three-prisoner puzzle. In Gr¬unwald and
Halpern [2003], the problem is described as:

Of three prisonersa, b, andc, two are to be executed, buta does
not know which. Thus,a thinks that the probability thati will be
executed is 2/3 fori P ta, b, cu. He says to the jailer, ÒSince
either b or c is certainly going to be executed, you will give me
no information about my own chances if you give me the name of
one man, eitherb or c, who is going to be executed.Ó But then, no
matter what the jailer says, naive conditioning leadsa to believe
that his chance of execution went down from 2/3 to 1/2.

Each prisoner is safe with probability 1/3:
safepaq: 1{3 ; safepbq: 1{3 ; safepcq: 1{3.

If a is safe, the jailer tells that one of the other prisoners will be executed
uniformly at random:

tell executedpbq: 1{2 ; tell executedpcq: 1{2 ! safepaq.
Otherwise, he tells that the only unsafe prisoner will be executed:

6http://cplint.eu/e/jail.swinb

http://cplint.eu/e/jail.swinb

54 Probabilistic Logic Programming Languages

tell executedpbq ! safepcq.
tell executedpcq ! safepbq.

The jailer speaks if he tells that somebody will be executed:
tell ! tell executedp q.

a is safe after the jailer utterance if he is safe and the jailer speaks:
safe after tell : « safepaq, tell.

By computing the probability ofsafepaqandsafe af ter tell , we get the same
probability of 1/3, so the jailer utterance does not change the probability ofa
of being safe.

We can see this also by considering conditional probabilities: the proba-
bility of safepaqgiven the jailer utterancetell is

Ppsafepaq|tell q Ò
Ppsafepaq, tell q

Pptell q
Ò

Ppsafe after tellq
Pptell q

Ò
1{3
1

Ò 1{3

because the probability oftell is 1.

Example 24 (Russian roulette with two guns Ð LPAD).The following
example7 models a Russian roulette game with two guns [Baral et al., 2009].
The death of the player is caused with probability 1/6 by triggering the left
gun and similarly for the right gun:

death : 1{6 ! pull trigger pleft gunq.
death : 1{6 ! pull trigger pright gunq.
pull trigger pleft gunq.
pull trigger pright gunq.

Querying the probability ofdeath we gent the probability of the player of
dying.

Example 25 (Mendelian rules of inheritance Ð LPAD).Blockeel [2004]
presents a program8 that encodes the Mendelian rules of inheritance of
the color of pea plants. The color of a pea plant is determined by a gene
that exists in two forms (alleles), purple,p, and white,w. Each plant
has two alleles for the color gene that reside on a couple of chromo-
somes.cg(X,N,A) indicates that plantX has alleleA on chromosomeN.
The program is:

colorpX, white q ! cgpX, 1, wq, cgpX, 2, wq.
colorpX, purple q ! cgpX, A, pq.

7http://cplint.eu/e/trigger.pl
8http://cplint.eu/e/mendel.pl

http://cplint.eu/e/trigger.pl
http://cplint.eu/e/mendel.pl

2.3 Examples of Programs55

cgpX, 1, Aq: 0.5 ; cgpX, 1, B q: 0.5 !
motherpY, X q, cgpY,1, Aq, cgpY,2, B q.

cgpX, 2, Aq: 0.5 ; cgpX, 2, B q: 0.5 !
fatherpY, X q, cgpY,1, Aq, cgpY,2, B q.

motherpm, cq. fatherpf, c q.
cgpm, 1, wq. cgpm, 2, wq. cgpf, 1, pq. cgpf, 2, wq.

The facts of the program express thatc is the offspring ofm and f and
that the alleles ofm are ww and of f are pw. The disjunctive rules
encode the fact that an offspring inherits the allele on chromosome 1 from
the mother and the allele on chromosome 2 from the father. In particular,
each allele of the parent has a probability of 50% of being transmitted.
The deÞnite clauses forcolor express the fact that the color of a plant is
purple if at least one of the alleles isp, i.e., that thep allele is domi-
nant. In a similar way, the rules of blood type inheritance can be written
in an LPAD9.

Example 26 (Path probability Ð LPAD). An interesting application of
PLP under the DS is the computation of the probability of a path
between two nodes in a graph in which the presence of each edge is
probabilistic10:

pathpX, X q.
pathpX, Y q ! pathpX, Z q, edgepZ, Y q.
edgepa, bq: 0.3. edgepb, cq: 0.2. edgepa, cq: 0.6.

This program, coded in ProbLog, was used in [De Raedt et al., 2007] for
computing the probability that two biological concepts are related in the
BIOMINE network [Sevon et al., 2006].

PLP under the DS can encode BNs Vennekens et al. [2004]: each value
of each random variable is encoded by a ground atom, each row of each CPT
is encoded by a rule with the value of parents in the body and the probability
distribution of values of the child in the head.

Example 27 (Alarm BN Ð LPAD). For example, the BN of Example 10
that we repeat in Figure 2.1 for readability can be encoded with the
program11

9http://cplint.eu/e/bloodtype.pl
10http://cplint.eu/e/path.swinb
11http://cplint.eu/e/alarm.pl

http://cplint.eu/e/bloodtype.pl
http://cplint.eu/e/path.swinb
http://cplint.eu/e/alarm.pl

56 Probabilistic Logic Programming Languages

Figure 2.1 Example of a BN.

burgptq: 0.1 ; burgpf q: 0.9.
earthquakeptq: 0.2 ; earthquakepf q: 0.8.
alarm ptq ! burgptq, earthqptq.
alarm ptq: 0.8 ; alarm pf q: 0.2 ! burgptq, earthqpf q.
alarm ptq: 0.8 ; alarm pf q: 0.2 ! burgpf q, earthqptq.
alarm ptq: 0.1 ; alarm pf q: 0.9 ! burgpf q, earthqpf q.
callptq : 0.9 ; callpf q: 0.1 ! alarm ptq.
callptq : 0.05 ; callpf q: 0.95! alarm pf q.

2.4 Equivalence of Expressive Power

To show that all these languages have the same expressive power, we
discuss transformations among probabilistic constructs from the various
languages.

The mapping between PHA/ICL and PRISM translates each PHA/ICL
disjoint statement to a multi-switch declaration and vice versa in the
obvious way. The mapping from PHA/ICL and PRISM to LPADs trans-
lates each disjoint statement/multi-switch declaration to a disjunctive
LPAD fact.

The translation from an LPAD into PHA/ICL (Þrst shown in [Vennekens
and Verbaeten, 2003]) rewrites each clauseCi with v variablesX

h1 : ! 1 ; . . . ; hn : ! n ! B.

into PHA/ICL by addingn new predicatest choicei 1{v, . . . , choicein {vuand
a disjoint statement:

2.4 Equivalence of Expressive Power57

h1 ! B, choicei 1pX q.
...
hn ! B, choicein pX q.

disjoint prchoicei 1pX q: ! 1, . . . , choicein pX q: ! nsq.

For instance, the Þrst clause of the medical symptoms LPAD of Example 19
is translated to

strong sneezingpX q ! flupX q, choice11pX q.
moderate sneezingpX q: 0.5 ! flupX q, choice12pX q.
disjoint prchoice11pX q: 0.3, choice12pX q: 0.5, choice13 : 0.2sq.

where the clausenull ! f lu pX q, choice13. is omitted since null does not
appear in the body of any clause.

Finally, as shown in [De Raedt et al., 2008], to convert LPADs into
ProbLog, each clauseCi with v variablesX

h1 : ! 1 ; . . . ; hn : ! n ! B.

is translated into ProbLog by addingn « 1 probabilistic facts for predicates
t f i 1{v, . . . , f in {vu:

h1 ! B, f i 1pX q.
h2 ! B, ã f i 1pX q, f i 2pX q.
...
hn ! B, ã f i 1pX q, . . . , ã f in « 1pX q.

&1 :: f i 1pX q.
...
&n« 1 :: f in « 1pX q.

where
&1 Ò ! 1

&2 Ò ! 2
1« %1

&3 Ò ! 3
p1« %1qp1« %2q

. . .

In general

&i Ò
! i

i « 1
j Ò1p1 « &j q

.

58 Probabilistic Logic Programming Languages

Note that while the translation into ProbLog introduces negation, the intro-
duced negation involves only probabilistic facts, and so the transformed
program will have a two-valued model whenever the original program does.

For instance, the Þrst clause of the medical symptoms LPAD of
Example 19 is translated to

strong sneezingpX q ! flupX q, f 11pX q.
moderate sneezingpX q: 0.5 ! flupX q, ã f 11pX q, f 12pX q.
0.3 :: f 11pX q.
0.71428571428 ::f 12pX q.

2.5 Translation to Bayesian Networks

We discuss here how an acyclic ground LPAD can be translated to a BN.
Let us Þrst deÞne the acyclic property for LPADs, extending DeÞnition 4.
An LPAD is acyclic if an integer level can be assigned to each ground atom
so that the level of each atom in the head of each ground rule is the same and
is higher than the level of each atom in the body.

An acyclic ground LPADP can be translated to a BN' pPq[Vennekens
et al., 2004].' pPq is built by associating each atoma in BP with a binary
variablea with values true (1) and false (0). Moreover, for each ruleCi of the
following form

h1 : ! 1 ; . . . ; hn : ! n ! b1, . . . bm , ã c1. . . . , ã cl
in groundpPq, we add a new variablechi (for Òchoice for ruleCi Ó) to' pPq.
chi hasb1, . . . , bm , c1, . . . , cl as parents. The values forchi areh1, . . ., hn
andnull , corresponding to the head atoms. The CPT ofchi is

. . . b1 Ò 1, . . . , bm Ò 1, c1 Ò 0, . . . , cl Ò 0 . . .
chi Ò h1 0.0 ! 1 0.0

. . .
chn Ò hn 0.0 ! n 0.0
chi Ò null 1.0 1 «

! n
i Ò1 ! i 1.0

that can be expressed as

Ppchi |b1, . . . , cl q Ò

$
ÕÕ&

ÕÕ%

⇧k if chi Ò hk , bi Ò 1, . . . , cl Ò 0
1 «

! n
j “1 ⇧j if chi Ò null, b i Ò 1, . . . , cl Ò 0

1 if chi Ò null, !p bi Ò 1, . . . , cl Ò 0q
0 otherwise

(2.7)

2.5 Translation to Bayesian Networks59

If the body is empty, the CPT forchi is

chi Ò h1 ! 1

. . .
chn Ò hn ! n

chi Ò null 1 «
! n

i Ò1 ! i

Moreover, for each variablea corresponding to atoma P BP , the parents are
all the variableschi of rulesCi that havea in the head. The CPT fora is the
following deterministic table:

At least one parent equal toa Remaining columns
a Ò 1 1.0 0.0
a Ò 0 0.0 1.0

encoding the function

a Ò f pchaq Ò
"

1 if Dchi Pcha : chi Ò a
0 otherwise

where cha are the parents ofa. Note that in order to convert an LPAD
containing variables into a BN, its grounding must be generated.

Example 28 (LPAD to BN). Consider the following LPADP:
C1 Ò a1 : 0.4 ; a2 : 0.3.
C2 Ò a2 : 0.1 ; a3 : 0.2.
C3 Ò a4 : 0.6 ; a5 : 0.4 ! a1.
C4 Ò a5 : 0.4 ! a2, a3.
C5 Ò a6 : 0.3 ; a7 : 0.2 ! a2, a5.

Its corresponding network' pPq is shown in Figure 1.7, where the CPT for
a2 andch5 are shown in Tables 2.1 and 2.2 respectively.

Table 2.1 Conditional probability table fora2

ch1, ch2 a1, a2 a1, a3 a2, a2 a2, a3

a2 Ò 1 1.0 0.0 1.0 1.0
a2 Ò 0 0.0 1.0 0.0 0.0

Table 2.2 Conditional probability table forch5

a2, a5 1,1 1,0 0,1 0,0
ch5 Ò x6 0.3 0.0 0.0 0.0
ch5 Ò x7 0.2 0.0 0.0 0.0
ch5 Ò null 0.5 1.0 1.0 1.0

60 Probabilistic Logic Programming Languages

Figure 2.2 BN ! pPqequivalent to the program of Example 28.

An alternative translation%pPqfor a ground programP is built by includ-
ing random variablesa for each atoma in BP andchi for each clauseCi as
for ' pPq. Moreover,%pPqincludes the Boolean random variablebodyi and
the random variableXi with valuesh1, . . ., hn andnull for each clauseCi .

The parents ofbodyi areb1, . . . , bm , andc1, . . . , cl and its CPT encodes
the deterministic AND Boolean function:

. . . b1 Ò 1, . . . , bm Ò 1, c1 Ò 0, . . . , cl Ò 0 . . .
bodyi Ò 0 1.0 0.0 1.0
bodyi Ò 1 0.0 1.0 0.0

If the body is empty, the CPT makesbodyi surely true

bodyi Ò 0 0.0
bodyi Ò 1 1.0

Xi has no parents and has the CPT

chi Ò h1 ! 1

. . .
chi Ò hn ! n

chi Ò null 1 «
! n

i Ò1 ! i

chi hasXi andbodyi as parents with the deterministic CPT

bodyi , Xi 0, h1 . . . 0, hn 0, null 1, h1 . . . 1, hn 1, null
chi Ò h1 0.0 . . . 0.0 0.0 1.0 . . . 0.0 0.0

. . .
chi Ò hn 0.0 . . . 0.0 0.0 0.0 . . . 1.0 0.0

chi Ò null 1.0 . . . 1.0 1.0 0.0 . . . 0.0 1.0

2.5 Translation to Bayesian Networks61

Figure 2.3 Portion of" pPqrelative to a clauseCI .

encoding the function

chi Ò f pbodyi , Xi q Ò
"

Xi if bodyi Ò 1
null if bodyi Ò 0

The parents of each variablea in %pPqare the variableschi of rulesCi that
havea in the head as for' pPq, with the same CPT as in' pPq.

The portion of%pPqrelative to a clauseCi is shown in Figure 2.3.
If we computePpchi |b1, . . . , bm , c1, . . . , cl qby marginalizing

Ppchi , bodyi , Xi |b1, . . . , bm , c1, . . . , cl q

we can see that we obtain the same dependency as in' pPq:

Ppchi |b1, . . . , cl q Ò

Ò
Ø

xi

Ø

body i

Ppchi , bodyi , xi |b1, . . . , cl q

Ò
Ø

xi

Ø

body i

Ppchi |bodyi , xi qPpxi qPpbodyi |b1, . . . , cl q

Ò
Ø

xi

Ppxi q
Ø

body i

Ppchi |bodyi , xi qPpbodyi |b1, . . . , cl q

Ò
Ø

xi

Ppxi q
Ø

body i

Ppchi |bodyi , xi q

$
&

%

1 if bodyi Ò 1, b1 Ò 1, . . . , cl Ò 0
1 if bodyi Ò 0, $pb1 Ò 1, . . . , cl Ò 0q
0 otherwise

Ò
Ø

xi

Ppxi q
Ø

body i

$
&

%

1 if chi Ò xi , bodyi Ò 1, b1 Ò 1, . . . , cl Ò 0
1 if chi Ò null, bodyi Ò 0, $pb1 Ò 1, . . . , cl Ò 0q
0 otherwise

62 Probabilistic Logic Programming Languages

Figure 2.4 BN " pPqequivalent to the program of Example 28.

Ò
!

xi
Ppxi q

$
&

%

1 if chi Ò xi , b1 Ò 1, . . . , cl Ò 0
1 if chi Ò null, $pb1 Ò 1, . . . , cl Ò 0q
0 otherwise

Ò

$
ÕÕ&

ÕÕ%

! k if chi Ò hk , bi Ò 1, . . . , cl Ò 0
1 «

! n
j Ò1 ! j if chi Ò null, bi Ò 1, . . . , cl Ò 0

1 if chi Ò null, $pbi Ò 1, . . . , cl Ò 0q
0 otherwise

which is the same as Equation (2.7).
From Figure 2.3 and using d-separation (see DeÞnition 17), we can see

that theXi variables are all pairwise unconditionally independent as between
every couple there is the colliderXi „ chi ! bodyi .

Figure 2.4 shows%pPqfor Example 28.

2.6 Generality of the Distribution Semantics

The assumption of independence of the random variables associated with
ground clauses may seem restrictive. However, any probabilistic relationship
between Boolean random variables that can be represented with a BN can be

2.6 Generality of the Distribution Semantics63

Figure 2.5 BN representing the dependency betweenapiqandbpiq.

modeled in this way. For example, suppose you want to model a general
dependency between the ground atomsapiqandbpiqregarding predicatesa{1
andb{1 and constanti . This dependency can be represented with the BN of
Figure 2.5.

The joint probability distributionPpapiq, bpiqq over the two Boolean
random variablesapiqandbpiqis

Pp0, 0q Ò p1 « p1qp1 « p2q
Pp0, 1q Ò p1 « p1qpp2q
Pp1, 0q Ò p1p1 « p3q
Pp1, 1q Ò p1p3

This dependency can be modeled with the following LPADP:
C1 Ò apiq: p1
C2 Ò bpX q: p2 ! apX q
C3 Ò bpX q: p3 ! ã apX q

We can associate Boolean random variablesX1 with C1, X2, with C2t X {iu,
and X3 with C3t X {iu, whereX1, X2, and X3 are mutually independent.
These three random variables generate eight worlds.$ apiq ^ $ bpiq for
example is true in the worlds

w1 Ò H , w2 Ò t bpiq ! apiqu
whose probabilities are

P1pw1q Ò p1 « p1qp1 « p2qp1 « p3q
P1pw2q Ò p1 « p1qp1 « p2qp3

so

P1p$apiq, $ bpiqq Ò p1« p1qp1« p2qp1« p3q`p1« p1qp1« p2qp3 Ò Pp0, 0q.

We can prove similarly that the distributionsP andP1 coincide for all joint
states ofapiqandbpiq.

64 Probabilistic Logic Programming Languages

Figure 2.6 BN modeling the distribution overapiq, bpiq, X1, X2, X3.

Modeling the dependency betweenapiqandbpiqwith the program above
is equivalent to represent the BN of Figure 2.5 with the network%pPq of
Figure 2.6.

Since%pPq deÞnes the same distribution asP, the distributionsP and
P2, the one deÞned by%pPq, agree on the variablesapiqandbpiq, i.e.,

Ppapiq, bpiqq ÒP2papiq, bpiqq

for any value ofapiqandbpiq. From Figure 2.6, it is also clear thatX1, X2, and
X3 are mutually unconditionally independent, thus showing that it is possible
to represent any dependency with independent random variables. So we can
model general dependencies among ground atoms with the DS.

This conÞrms the results of Sections 2.3 and 2.5 that graphical models can
be translated into probabilistic logic programs under the DS and vice versa.
Therefore, the two formalisms are equally expressive.

2.7 Extensions of the Distribution Semantics

Programs under the DS may containßexible probabilities[De Raedt and
Kimmig, 2015] or probabilities that depend on values computed during
program execution. In this case, the probabilistic annotations are variables,
as in the program12 from [De Raedt and Kimmig, 2015]

12http://cplint.eu/e/ßexprob.pl

http://cplint.eu/e/flexprob.pl

2.7 Extensions of the Distribution Semantics65

red(Prob):Prob.

draw_red(R, G):-
Prob is R/(R + G),
red(Prob).

The querydraw_red(r,g), wherer andg are the number of green and
red balls in an urn, succeeds with the same probability as that of drawing a
red ball from the urn.

Flexible probabilities allow the computation of probabilities on the ßy
during inference. However, ßexible probabilities must be ground when their
value must be evaluated during inference. Many inference systems support
them by imposing constraints on the form of programs.

The body of rules may also contain literals for a meta-predicate such
asprob/2 that computes the probability of an atom, thus allowing nested
or meta-probability computations [De Raedt and Kimmig, 2015]. Among
the possible uses of such a feature De Raedt and Kimmig [2015] mention:
Þltering proofs on the basis of the probability of subqueries, or implementing
simple forms of combining rules.

An example of the Þrst use is13

a:0.2:-
prob(b,P),
P>0.1.

wherea succeeds with probability 0.2 only if the probability ofb is larger
than 0.1.

An example of the latter is14

p(P):P.

max_true(G1, G2) :-
prob(G1, P1),
prob(G2, P2),
max(P1, P2, P), p(P).

wheremax_true(G1,G2) succeeds with the success probability of its
more likely argument.

13http://cplint.eu/e/meta.pl
14http://cplint.eu/e/metacomb.pl

http://cplint.eu/e/meta.pl
http://cplint.eu/e/metacomb.pl

66 Probabilistic Logic Programming Languages

2.8 CP-Logic

CP-logic [Vennekens et al., 2009] is a language for representing causal laws.
It shares many similarities with LPADs but speciÞcally aims at modeling
probabilistic causality. Syntactically,CP-logic programs, or CP-theories, are
identical to lpads15: they are composed of annotated disjunctive clauses that
are interpreted as follows: for each grounding

h1 : ! 1 ; . . . ; hm : ! n ! B

of a clause of the program,B represents an event whose effect is to cause at
most one of thehi atoms to become true and the probability ofhi of being
caused is! i . Consider the following medical example.

Example 29 (CP-logic program Ð infection [Vennekens et al., 2009]).A
patient is infected by a bacterium. Infection can cause either pneumonia
or angina. In turn, angina can cause pneumonia and pneumonia can cause
angina. This can be represented by the CP-logic program:

angina : 0.2 ! pneumonia. (2.8)

pneumonia : 0.3 ! angina. (2.9)

pneumonia : 0.4 ; angina : 0.1 ! infection. (2.10)

infection. (2.11)

The semantics of CP-logic programs is given in terms of probability trees
that represent the possible courses of the events encoded in the program. We
consider Þrst the case where the program is positive, i.e., the bodies of rules
do not contain negative literals.

Definition 18 (Probability tree Ð positive case).A probability tree16 T for
a program P is a tree where every noden is labeled with a two-valued
interpretationI pnqand a probabilityPpnq. T is constructed as follows:

¥ The root noder has probability Ppr q Ò 1.0 and interpretation
I pr q Ò H.

¥ Each inner noden is associated with a ground clauseCi such that

– no ancestor ofn is associated withCi ,
– all atoms inbodypCi qare true inI pnq,

15There are versions of CP-logic that have a more general syntax but they are not essential
for the discussion here

16We follow here the deÞnition of [Shterionov et al., 2015] for its simplicity.

2.8 CP-Logic 67

n has one child node for each atomhk P headpCi q. Thek-th child has
interpretationI pnq Y thkuand probabilityPpnq ¬! k .

¥ No leaf can be associated with a clause following the rule above.

A probability tree deÞnes a probability distributionPpI qover the interpreta-
tion of the programP: the probability of an interpretationI is the sum of the
probabilities of the leaf nodesn such thatI Ò I pnq.

The probability tree for Example 2.11 is shown in Figure 2.7. The
probability distribution over the interpretations is

I t inf , pn, angu t inf , pnu t inf , angu t inf u
PpI q 0.11 0.32 0.07 0.5

There can be more than one probability tree for a program but Vennekens
et al. [2009] show that all the probability trees for the program deÞne the
same probability distribution over interpretations. So we can speak ofthe
probability tree forP and this deÞnes the semantics of the CP-logic program.
Moreover, each program has at least one probability tree.

Vennekens et al. [2009] also show that the probability distribution deÞned
by the LPADs semantics is the same as that deÞned by the CP-logic seman-
tics. So probability trees represent an alternative deÞnition of the DS for
LPADs.

If the program contains negation, checking the truth of the body of a
clause must be made with care because an atom that is currently absent from
I pnq may become true later. Therefore, we must make sure that for each
negative literalã a in bodypCi q, the positive literala cannot be made true
starting fromI pnq.

Example 30 (CP-logic program Ð pneumonia [Vennekens et al., 2009]).A
patient has pneumonia. Because of pneumonia, the patient is treated. If the
patient has pneumonia and is not treated, he may get fever.

Figure 2.7 Probability tree for Example 2.11. From [Vennekens et al., 2009].

68 Probabilistic Logic Programming Languages

pneumonia. (2.12)

treatment : 0.95 ! pneumonia. (2.13)

fever : 0.7 ! pneumonia, ã treatment. (2.14)

Two probability trees for this program are shown in Figures 2.8 and 2.9. Both
trees satisfy DeÞnition 18 but deÞne two different probability distributions.
In the tree of Figure 2.8, Clause 2.14 has negative literalã treatment in its
body and is applied at a stage wheretreatment may still become true, as
happens in the level below.

In the tree of Figure 2.9, instead Clause 2.14 is applied when the only
rule for treatment has already Þred, so in the right child of the node at the
second leveltreatment will never become true and Clause 2.14 can safely
be applied.

In order to formally deÞne this, we need the following deÞnition that uses
three-valued logic. A conjunction in three-valued logic is true or undeÞned if
no literal in it is false.

Figure 2.8 An incorrect probability tree for Example 30. From [Vennekens et al., 2009].

Figure 2.9 A probability tree for Example 30. From [Vennekens et al., 2009].

2.8 CP-Logic 69

Definition 19 (Hypothetical derivation sequence).A hypothetical derivation
sequencein a noden is a sequencepI i q0! i ! n of three-valued interpretations
that satisfy the following properties. Initially,I 0 assigns false to all atoms
not in I pnq. For eachi # 0, I i ` 1 Ò xI T,i ` 1, I F,i ` 1y is obtained fromI i Ò
xI T,i , I F,i y by considering a ruleR with bodypRqtrue or undeÞned inI i and
an atoma in its head that is false inI . ThenI T,i ` 1 Ò I T,i ` 1 and I F,i ` 1 Ò
I F,i ` 1ztau.

Every hypothetical derivation sequence reaches the same limit. For a noden
in a probabilistic tree, we denote this unique limit asI pnq. It represents the
set of atoms that might still become true; in other words, all the atoms in the
false part ofI pnq will never become true and so they can be considered as
false.

The deÞnition of probability tree of a program with negation becomes the
following.

Definition 20 (Probability tree Ð general case).A probability treeT for a
programP is a tree

¥ satisfying the conditions of DeÞnition 18, and
¥ for each noden and associated clauseCi , for each negative literalã a

in bodypCi q, a P I F with I pnq Ò xI T , I F y.

All the probability trees according for the program according to DeÞnition 20
establish the same probability distribution over interpretations.

It can be shown that the set of false atoms of the limit of the hypothetical
derivation sequence is equal to the greatest Þxpoint of the operatorOpFalse

P
I

(see DeÞnition 2) withI Ò xI pnq, Hy andP a program that contains, for
each rule

h1 : ! 1 ; . . . ; hm : ! n ! B

of P, the rules

h1 ! B.

. . .

hm ! B.

In other words, ifI pnq Ò xI T , I F y andgfppOpFalse
P
I q ÒF , thenI F Ò F .

In fact, for the body of a clause to be true or undeÞned inI i Ò xI T,i , I F,i y,
each positive literala must be absent fromI F,i and each negative literal
ã a must be such thata is absent fromI T,i , which are the complementary
conditions in the deÞnition of the operatorOpFalse

P
I pFaq.

70 Probabilistic Logic Programming Languages

On the other hand, the generation of a childn1 of a noden using a rule
Ci that adds an atoma to I pnq can be seen as part of an application of
OpTrue

P
I pnq. So there is a strong connection between CP-logic and the WFS.

In the trees of Figures 2.8 and 2.9, the childn Ò t pnu of the root has
I F Ò H , so Clause 2.14 cannot be applied astreatment R I F and the only
tree allowed by DeÞnition 20 is that of Figure 2.9.

The semantics of CP-logic satisÞes these causality principles:

¥ Theprinciple of universal causationstates that all changes to the state
of the domain must be triggered by a causal law whose precondition is
satisÞed.

¥ The principle of sufÞcient causationstates that if the precondition to
a causal law is satisÞed, then the event that it triggers must eventually
happen.

and therefore the logic is particularly suitable for representing causation.
Moreover, CP-logic satisÞes thetemporal precedence assumptionthat

states that a ruleR will not Þre until its precondition is in its Þnal state. In
other words, a rule Þres only when the causal process that determines whether
its precondition holds is fully Þnished. This is enforced by the treatment of
negation of CP-logic.

There are CP-logic programs that do not admit any probability tree, as the
following example shows.

Example 31 (Invalid CP-logic program [Vennekens et al., 2009]).In a two-
player game, white wins if black does not win and black wins if white does
not win:

win pwhiteq ! ã win pblackq. (2.15)

win pblackq ! ã win pwhiteq. (2.16)

At the root of the probability tree for this program, both Clauses 2.15 and
2.16 have their body true but they cannot Þre asI F for the root isH . So
the root is a leaf where however two rules have their body true, thus violating
the condition of DeÞnition 18 that requires that leaves cannot be associated
with rules.

This theory is problematic from a causal point of view, as it is impossible to
deÞne a process that follows the causal laws. Therefore, we want to exclude
these cases and consider onlyvalid CP-theories.

Definition 21 (Valid CP-theory). A CP-theory isvalid if it has at least one
probability tree.

2.9 Semantics for Non-Sound Programs71

The equivalence of the LPADs and CP-logic semantics is also carried to
the general case of programs with negation: the probability tree of a valid
CP-theory deÞnes the same distribution as that deÞned by interpreting the
program as an LPAD.

However, there are sound LPADs that are not valid CP-theories. Recall
that a sound LPAD is one where each possible world has a two-valued WFM.

Example 32 (Sound LPAD Ð invalid CP-theory Vennekens et al. [2009]).
Consider the program

p : 0.5 ; q : 0.5 ! r.
r !ã p.
r !ã q.

Such a program has no probability tree, so it is not a valid CP-theory. Its
possible worlds are

t p ! r ; r !ã p; r !ã qu

and
t q ! r ; r !ã p; r !ã qu

that both have total WFMs,t r, pu and t r, qu, respectively, so the LPAD is
sound.

In fact, it is difÞcult to imagine a causal process for this program.

Therefore, LPADs and CP-logic have some differences but these arise only
in corner cases, so sometimes CP-logic and LPADs are used as a synonyms.
This also shows that clauses in LPADs can be assigned in many cases a causal
interpretation.

The equivalence of the semantics implies that, for a valid CP-theory, the
leaves of the probability tree are associated with the WFMs of the possible
world obtained by considering all the clauses used in the path from the root to
the leaf with the head selected according to the choice of child. If the program
is deterministic, the only leaf is associated with the total-well founded model
of the program.

2.9 Semantics for Non-Sound Programs

In Section 2.2, we considered only sound programs, those for which every
world has a two-valued WFM. In this way, we avoid non-monotonic aspects
of the program and we deal with uncertainty only by means of probability
theory.

72 Probabilistic Logic Programming Languages

When a program is not sound in fact, assigning a semantics to probabilis-
tic logic programs is not obvious, as the next example shows.

Example 33 (Insomnia [Cozman and Mau«a, 2017]). Consider the program
sleep!ã work, ã insomnia.
work !ã sleep.
(:: insomnia.

This program has two worlds,w1 containinginsomnia andw2 not contain-
ing it. The Þrst has the single stable model and total WFM

I 1 Ò t insomnia, ã sleep,ã worku

The latter has two stable models

I 2 Ò t insomnia, ã sleep, worku
I 3 Ò t insomnia, sleep, ã worku

and a WFM I 2 where insomnia is true and the other two atoms are
undeÞned.

If we ask for the probability ofsleep, the Þrst world,w1, with probability
(, surely doesnÕt contribute. We are not sure instead what to do with the
second, assleep is included in only one of the two stable models and it is
undeÞned in the WFM.

To handle programs like the above, Hadjichristodoulou and Warren [2012]
proposed the WFS for probabilistic logic programs where a program deÞnes
a probability distribution over WFMs rather than two-valued models. This
induces a probability distribution over random variables associated with
atoms that are, however, three-valued instead of Boolean.

An alternative approach, thecredal semantics[Cozman and Mau«a, 2017],
sees such programs as deÞning a set of probability measures over the interpre-
tations. The name derives from the fact that sets of probability distributions
are often calledcredal sets.

The semantics considers programs syntactically equal to ProbLog (i.e.,
non-probabilistic rules and probabilistic facts) and generates worlds as in
ProbLog. The semantics requires that each world of the program has at least
one stable models. Such programs are calledconsistent.

A program then deÞnes a set of probability distributions over the set of
all possible two-valued interpretations of the program. Each distributionP in
the set is called aprobability modeland must satisfy two conditions:

1. every interpretationI for whichPpI q # 0 must be a stable model of the
world w# that agrees withI on the truth value of the probabilistic facts;

2.9 Semantics for Non-Sound Programs73

2. the sum of the probabilities of the stable models ofw must be equal
to Pp#q.

A set of distributions is obtained because we do not Þx how the probability
massPp#q of a world w# is distributed over its stable models when there
is more than one. We indicate withP the set of probability models and call
it the credal semanticsof the program. Given a probability model, we can
compute the probability of a queryq as for the Distribution Semantics (DS),
by summingPpI qfor all the interpretationsI whereq is true.

In this case, given a queryq, we are interested in thelower and upper
probabilitiesof q deÞned as

Ppqq Ò inf
P PP

Ppqq

Ppqq Ò sup
P PP

Ppqq

If we are also given evidencee, Cozman and Mau«a [2017] deÞnelower and
upper conditional probabilitiesas

Ppq|eq Ò inf
P PP,P peq" 0

Ppqq

Ppq|eq Ò sup
P PP,P peq" 0

Ppqq

and leave them undeÞned whenPpeq Ò0 for all P PP.

Example 34 (Insomnia Ð continued Ð [Cozman and Mau«a, 2017]). Consider
again the program of Example 33. A probability model that assigns the
following probabilities to the models of the program

PpI 1q Ò(
PpI 2q Ò%p1 « (q
PpI 3q Ò p1 « %qp1 « (q

for %P r0, 1s, satisÞes the two conditions of the semantics, and thus belongs
to P. The elements ofP are obtained by varying%.

Considering the querysleep, we can easily see thatPpsleepÒ trueqÒ 0

andPpsleepÒ trueq Ò1 « (.
With the semantics of [Hadjichristodoulou and Warren, 2012] instead,

we have
PpI 1q Ò(
PpI 2q Ò1 « (

74 Probabilistic Logic Programming Languages

so
PpsleepÒ trueq Ò0
PpsleepÒ falseq Ò(
PpsleepÒ undefinedq Ò1 « (.

Example 35 (Barber paradox Ð [Cozman and Mau«a, 2017]). The barber
paradox was introduced by Russell [1967]. If the village barber shaves all,
and only, those in the village who donÕt shave themselves, does the barber
shave himself?

A probabilistic version of this paradox can be encoded with the program
shavespX, Y q ! barberpX q, villager pYq, ã shavespY, Yq.
villager paq.
barberpbq.
0.5 :: villager pbq.

and the queryshavespb, bq.
The program has two worlds,w1 and w2, the Þrst not containing the

fact villager pbq and the latter containing it. The Þrst world has a single
stable modelI 1 Ò t villager paq, barberpbq, shavespb, aquthat is also the
total WFM. In the latter world, the rule has an instance that can be simpliÞed
to shavespb, bq !ã shavespb, bq. Since it contains a loop through an odd
number of negations, the world has no stable model and the three-valued
WFM:

I 2 Ò t villager paq, barberpbq, shavespb, aq, ã shavespa, aq, ã shavespa, bqu.

So the program is not consistent and the credal semantics is not deÞned for it,
while the semantics of [Hadjichristodoulou and Warren, 2012] is still deÞned
and would yield

Ppshavespb, bq Òtrueq Ò0.5
Ppshavespb, bq Òundefinedq Ò0.5

The WFS for probabilistic logic programs assigns a semantics to more
programs. However, it introduces the truth valueundeÞnedthat expresses
uncertainty and, since probability is used as well to deal with uncertainty,
some confusion may arise. For example, one may ask what is the value of
pq Ò true |e Ò undef ined q. If e Ò undef ined means that we donÕt know
anything aboute, thenPpq Ò true |e Ò undef ined q should be equal to
Ppq Ò trueqbut this is not true in general. The credal semantics avoids these
problems by considering only two truth values.

Cozman and Mau«a [2017] show that the setP is the set of all probability
measures that dominate an inÞnitely monotone Choquet capacity.

2.9 Semantics for Non-Sound Programs75

An inÞnitely monotone Choquet capacityis a functionP from an algebra
" on a setW to the real intervalr0, 1ssuch that

1. PpW q Ò1 « PpHq Ò 1, and
2. for any$1, . . . , $n " " ,

PpYi $i q %
Ø

J #t 1,...,n u

p«1q|J |` 1PpXj PJ $j q (2.17)

InÞnitely monotone Choquet capacity is a generalization of Þnitely additive
probability measures: the latter are special cases of the Þrst where Equation
(2.17) holds with equality. In fact, the right member of Equation (2.17) is an
application of the inclusionÐexclusion principle that gives the probability of
the union of non-disjoint sets. InÞnitely monotone Choquet capacities also
appear as belief functions of DempsterÐShafer theory [Shafer, 1976].

Given an inÞnitely monotone Choquet capacityP, we can construct the
set of measuresDpPqthat dominateP as

DpPq Ò tP|@$ P" : Pp$q %Pp$qu

We say thatP generatesthe credal setDpPqand we callDpPqaninÞnitely
monoton credal set. It is possible to show that the lower probability ofDpPq
is exactly the generating inÞnitely monotone Choquet capacity:Pp$q Ò
inf P PD pP qPp$q.

InÞnitely monotone credal sets are closed and convex. Convexity here
means that ifP1 andP2 are in the credal set, then(P 1 ` p 1« (qP2 is also in
the credal set for(P r0, 1s. Given a consistent program, its credal semantics
is thus a closed and convex set of probability measures.

Moreover, given a queryq, we have

Ppqq Ò
Ø

wPW,AS pwq#Jq

Pp#q Ppqq Ò
Ø

wPW,AS pwqXJqäH

Pp#q

whereJq is the set of interpretations whereq is true andASpwqis the set of
stable models of worldw#.

The lower and upper conditional probabilities of a queryq are given by:

Ppq|eq Ò
Ppq, eq

Ppq, eq ` Pp$q, eq
(2.18)

Ppq|eq Ò
Ppq, eq

Ppq, eq ` Pp$q, eq
(2.19)

76 Probabilistic Logic Programming Languages

2.10 KBMC Probabilistic Logic Programming Languages

In this section, we present three examples of KBMC languages: Bayesian
Logic Programs (BLPs), CLP(BN), and the Prolog Factor Language (PFL).

2.10.1 Bayesian Logic Programs

BLPs [Kersting and De Raedt, 2001] use logic programming to compactly
encode a large BN. In BLPs, each ground atom represents a (not necessarily
Boolean) random variable and the clauses deÞne the dependencies between
ground atoms. A clause of the form

a|a1, . . . , am

indicates that, for each of its groundingspa|a1, . . . , am q! , a! hasa1! , . . .,
am ! as parents. The domains and CPTs for the ground atom/random variables
are deÞned in a separate portion of the model. In the case where a ground
atoma! appears in the head of more than one clause, acombining ruleis
used to obtain the overall CPT from those given by individual clauses.

For example, in the Mendelian genetics program of Example 25, the
dependency that gives the value of the color gene on chromosome 1 of a
plant as a function of the color genes of its mother can be expressed as

cg(X,1)|mother(Y,X),cg(Y,1),cg(Y,2).

where the domain of atoms built on predicatecg/2is { p,w} and the domain of
mother(Y,X)is Boolean. A suitable CPT should then be deÞned that assigns
equal probability to the alleles of the mother to be inherited by the plant.

Various learning systems use BLPs as the representation language: RBLP
[Revoredo and Zaverucha, 2002; Paes et al., 2005], PFORTE [Paes et al.,
2006], andSCOOBY [Kersting and De Raedt, 2008].

2.10.2 CLP(BN)

In a CLP(BN) program [Costa et al., 2003], logical variables can be random.
Their domain, parents, and CPTs are deÞned by the program. Probabilistic
dependencies are expressed by means of constraints as in Constraint Logic
Programming (CLP):

{ Var = Function with p(Values, Dist) }
{ Var = Function with p(Values, Dist, Parents) }

2.10 KBMC Probabilistic Logic Programming Languages77

The Þrst form indicates that the logical variableVar is random with domain
Values and CPTDist but without parents; the second form deÞnes a
random variable with parents. In both forms,Function is a term over
logical variables that is used to parameterize the random variable: a different
random variable is deÞned for each instantiation of the logical variables in
the term. For example, the following snippet from a school domain:

course_difficulty(CKey, Dif) :-
{ Dif = difficulty(CKey) with p([h,m,l],
[0.25, 0.50, 0.25]) }.

deÞnes the random variableDif with valuesh, m, andl representing the
difÞculty of the course identiÞed byCKey. There is a different random
variable for every instantiation ofCKey, i.e., for each course. In a similar
manner, the intelligenceInt of a student identiÞed bySKey is given by

student_intelligence(SKey, Int) :-
{ Int = intelligence(SKey) with p([h, m, l],
[0.5,0.4,0.1]) }.

Using the above predicates, the following snippet predicts the grade received
by a student when taking the exam of a course.

registration_grade(Key, Grade) :-
registration(Key, CKey, SKey),
course_difficulty(CKey, Dif),
student_intelligence(SKey, Int),
{ Grade = grade(Key) with p([’A’,’B’,’C’,’D’],
% h/h h/m h/l m/h m/m m/l l/h l/m l/l
[0.20,0.70,0.85,0.10,0.20,0.50,0.01,0.05,0.10,
% ’A’
0.60,0.25,0.12,0.30,0.60,0.35,0.04,0.15,0.40,
% ’B’
0.15,0.04,0.02,0.40,0.15,0.12,0.50,0.60,0.40,
% ’C’
0.05,0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.10],
% ’D’

[Int,Dif]) }.

Here Grade indicates a random variable parameterized by the identiÞer
Key of a registration of a student to a course. The code states that there

78 Probabilistic Logic Programming Languages

is a different random variableGrade for each studentÕs registration in a
course and each such random variable has possible values‘‘A’’, ‘‘B’’,
‘‘C’’ and‘‘D’’. The actual value of the random variable depends on the
intelligence of the student and on the difÞculty of the course, that are thus its
parents. Together with facts forregistration/3 such as

registration(r0,c16,s0). registration(r1,c10,s0).
registration(r2,c57,s0). registration(r3,c22,s1).
....

the code deÞnes a BN with aGrade random variable for each registration.
CLP(BN) is implemented as a library of YAP Prolog. The library performs
query answering by constructing the sub-network that is relevant to the query
and then applying a BN inference algorithm.

The unconditional probability of a random variable can be computed by
simply asking a query to the YAP command line.

The answer will be a probability distribution over the values of the logical
variables of the query that represent random variables, as in

?- registration_grade(r0,G).
p(G=a)=0.4115,
p(G=b)=0.356,
p(G=c)=0.16575,
p(G=d)=0.06675 ?

Conditional queries can be posed by including in the query ground atoms
representing the evidence.

For example, the probability distribution of the grades of registrationr0
given that the intelligence of the student is high (h) is given by

?- registration_grade(r0,G),
student_intelligence(s0,h).
p(G=a)=0.6125,
p(G=b)=0.305,
p(G=c)=0.0625,
p(G=d)=0.02 ?

In general, CLP provides a useful tool for Probabilistic Logic Programming
(PLP), as is testiÞed by the proposals clp(pdf(Y)) [Angelopoulos, 2003, 2004]
and Probabilistic Constraint Logic Programming (PCLP) [Michels et al.,
2015], see Section 4.5.

2.10 KBMC Probabilistic Logic Programming Languages79

2.10.3 The Prolog Factor Language

The PFL [Gomes and Costa, 2012] is an extension of Prolog for representing
Þrst-order probabilistic models.

Most graphical models such as BNs and MNs concisely represent a joint
distribution by encoding it as a set of factors. The probability of a set of
variablesX taking valuex can be expressed as the product ofn factors as:

PpX Ò xq Ò

#
i Ò1,...,n) i px i q

Z

wherex i is a sub-vector ofx on which thei -th factor depends andZ is the
normalization constant. Often, in a graphical model, the same factors appear
repeatedly in the network, and thus we can parameterize these factors in order
to simplify the representation.

A Parameterized Random Variables (PRVs) is a logical atom representing
a set of random variables, one for each of its possible ground instantiations.
We indicate PRV asX,Y, . . . and vectors of PRVs asX,Y, . . .

A parametric factoror parfactor [Kisynski and Poole, 2009b] is a triple
xC, V, F y whereC is a set of inequality constraints on parameters (logical
variables),V is a set of PRVs andF is a factor that is a function from the
Cartesian product of ranges of PRVs inV to real values. A parfactor is also
represented asF pVq|C or F pVq if there are no constraints. A constrained
PRV is of the formV|C, whereV Ò ppX 1, . . . , X nq is a non-ground atom
andC is a set of constraints on logical variablesX Ò t X 1, . . . , X nu. Each
constrained PRV represents the set of random variablest Ppxq|x PCu, where
x is the tuple of constantspx1, . . . , xnq. Given a (constrained) PRVV, we
useRV pVqto denote the set of random variables it represents. Each ground
atom is associated with one random variable, which can take any value in
rangepVq.

The PFL extends Prolog to support probabilistic reasoning with paramet-
ric factors. A PFL factor is a parfactor of the form

T ypeF ;) ; C,

whereT ype refers to the type of the network over which the parfactor is
deÞned (bayesfor directed networks ormarkov for undirected ones);F is a
sequence of Prolog goals each deÞning a PRV under the constraints inC(the
arguments of the factor). IfL is the set of all logical variables inF, thenCis a
list of Prolog goals that impose bindings onL (the successful substitutions for

80 Probabilistic Logic Programming Languages

the goals inCare the valid values for the variables inL).) is the table deÞning
the factor in the form of a list of real values. By default, all random variables
are Boolean but a different domain may be deÞned. Each parfactor represents
the set of its groundings. To ground a parfactor, all variables ofL are replaced
with the values permitted by constraints inC. The set of ground factors deÞnes
a factorization of the joint probability distribution over all random variables.

Example 36 (PFL program). The following PFL program is inspired by the
workshop attributes problem of [Milch et al., 2008]. It models the organiza-
tion of a workshop where a number of people have been invited.series
indicates whether the workshop is successful enough to start a series of
related meetings whileattends(P) indicates whether personP attends
the workshop.

This problem can be modeled by a PFL program such as

bayes series, attends(P); [0.51, 0.49, 0.49, 0.51];
[person(P)].

bayes attends(P), at(P,A); [0.7, 0.3, 0.3, 0.7];
[person(P),attribute(A)].

A workshop becomes a series because people attend. People attend the
workshop depending on the workshopÕs attributes such as location, date,
fame of the organizers, etc. The probabilistic atomat(P,A) represents
whether personP attends because of attributeA.

The Þrst PFL factor has the random variablesseries and
attends(P) as arguments (both Boolean),[0.51,0.49,0.49,0.51]
as table and the list[person(P)] as constraint.

Since KBMC languages are deÞned on the basis of a translation to graphical
models, translations can be built between PLP languages under the DS and
KBMC languages. The Þrst have the advantage that they have a semantics
that can be understood in logical terms, without necessarily referring to an
underlying graphical model.

2.11 Other Semantics for Probabilistic Logic Programming

Here we brießy discuss a few examples of PLP frameworks that donÕt follow
the distribution semantics. Our goal in this section is simply to give the
ßavor of other possible approaches; a complete account of such frameworks
is beyond the scope of this book.

2.11 Other Semantics for Probabilistic Logic Programming81

2.11.1 Stochastic Logic Programs

Stochastic Logic Programs (SLPs) [Muggleton et al., 1996; Cussens, 2001]
are logic programs with parameterized clauses which deÞne a distribution
over refutations of goals. The distribution provides, by marginalization, a
distribution over variable bindings for the query. SLPs are a generalization
of stochastic grammars and hidden Markov models.

An SLPS is a deÞnite logic program where some of the clauses are of
the formp : C wherep P R, p % 0, andC is a deÞnite clause. LetnpSq
be the deÞnite logic program obtained by removing the probability labels. A
pureSLP is an SLP where all clauses have probability labels. Anormalized
SLP is one where probability labels for clauses whose heads share the same
predicate symbol sum to one.

In pure SLPs, each SLD derivation for a queryq is assigned a real label
by multiplying the labels of each individual derivation step. The label of a
derivation step where the selected atom uniÞes with the head of clausepi : Ci
is pi . The probability of a successful derivation fromq is the label of the
derivation divided by the sum of the labels of all the successful derivations.
This forms a distribution over successful derivations fromq.

The probability of an instantiationq! is the sum of the probabilities of the
successful derivations that produceq! . It can be shown that the probabilities
of all the atoms for a predicateq that succeed innpSq sum to one, i.e.,S
deÞnes a probability distribution over the success set ofq in npSq.

In impure SLPs, the unparameterized clauses are seen as non-probabilistic
domain knowledge acting as constraints. Derivations are identiÞed with the
set of the parameterized clauses they use. In this way, derivations that differ
only on the unparameterized clauses form an equivalence class.

In practice, SLPs deÞne probability distributions over the children of
nodes of the SLD tree for a query: a derivation stepu „ v that connects
nodeu with child nodev is assigned a probabilityPpv|uq. This induces a
probability distributions over paths from the root to the leaves of the SLD
tree and in turn over answers for the query.

Given their similarity with stochastic grammars and hidden Markov mod-
els, SLPs are particularly suitable for representing these kinds of models.
They differ from the DS because they deÞne a probability distribution over
instantiations of the query, while the DS usually deÞnes a distribution over
the truth values of ground atoms.

82 Probabilistic Logic Programming Languages

Example 37 (Probabilistic context-free grammar Ð SLP).Consider the
probabilistic context free grammar:

0.2 : S „ aS
0.2 : S „ bS
0.3 : S „ a
0.3 : S „ b

The SLP
0.2 : spra|Rsq ! spRq.
0.2 : sprb|Rsq ! spRq.
0.3 : sprasq.
0.3 : sprbsq.

deÞnes a distribution over the values ofS in spSq that is the same as the
one deÞned by the probabilistic context-free grammar above. For example,
Ppspra, bsqq Ò0.2 ¬0.3 Ò 0.6 according to the program andPpabq Ò 0.2 ¬
0.3 Ò 0.6 according to the grammar.

Various approaches have been proposed for learning SLPs. Muggleton
[2000a,b] proposed to use an Inductive Logic Programming (ILP) system,
Progol [Muggleton, 1995], for learning the structure of the programs, and
a second phase where the parameters are tuned using a generalization of
relative frequency.

Parameters are also learned by means of optimization in failure-adjusted
maximization [Cussens, 2001; Angelopoulos, 2016] and by solving algebraic
equations [Muggleton, 2003].

2.11.2 ProPPR

ProPPR [Wang et al., 2015] is an extension of SLPs that that is related to
Personalized PageRank (PPR) [Page et al., 1999].

ProPPR extends SLPs in two ways. The Þrst is the method for computing
the labels of the derivation steps. A derivation stepu „ v is not simply
assigned the parameter associated with the clause used in the step. Instead,
the label of the derivation step,Ppv|uqis computed using a log-linear model
Ppv|uq9 exppw ¬) u„ vqwherew is a vector of real-valued weights and) u„ v
is a 0/1 vector of ÒfeaturesÓ that depend on the clause being used. The features
are user deÞned and the association between clauses and features is indicated
using annotations.

Example 38 (ProPPR program).The ProPPR program [Wang et al., 2015]
aboutpX, Z q ! handLabeledpX, Z q. # base
aboutpX, Z q ! simpX, Y q, aboutpY, Zq. # prop

2.12 Other Semantics for Probabilistic Logics83

simpX, Y q ! link pX, Y q. # sim, link
simpX, Y q ! hasW ordpX, W q, hasW ordpY, Wq,

linkedBy pX, Y, W q. # sim, word
linkedBy pX, Y, W q. # bypW q

can be used to compute the topic of web pages on the basis of possible hand
labeling or similarity with other web pages. Similarity is deÞned as well in a
probabilistic way depending on the links and words between the two pages.

Clauses are annotated with a list of atoms (indicated after the # symbol) that
may contain variables from the head of clauses. In the example, the third
clause is annotated with the list of atomssim, link while the last clause is
annotated by the atombypW q. Each grounding of each atom in the list stands
for a different feature, so for examplesim , link , andbypsprinter qstand for
three different features. The vector) u„ v is obtained by assigning value 1 to
the features associated with the atoms in the annotation of the clause used
for the derivation stepu „ v and value 0 otherwise. If the atoms contain
variables, these are shared with the head of the clause and are grounded with
the values of the clause instantiation used inu „ v.

So a ProPPR program is deÞned by an annotated program plus values for
the weightsw. This annotation approach considerably increases the ßexibility
of SLP labels: ProPPR annotations can be shared across clauses and can
yield labels that depend on the particular clause grounding that is used by
the derivation step. An SLP is a ProPPR program where each clause has a
different annotation consisting of an atom without arguments.

The second way in which ProPPR extend SLPs consists in the addition of
edges to the SLD tree: an edge is added (a) from every solution leaf to itself;
and (b) from every node to the start node.

The procedure for assigning probabilities to queries of SLP can then
be applied to the resulting graph. The self-loop links heuristically upweight
solution nodes and the restart links make SLPÕs graph traversal a PPR pro-
cedure [Page et al., 1999]: a PageRank can be associated with each node,
representing the probability that a random walker starting from the root
arrives in that node.

The restart links favor the results of short proofs: if the restart probability
is (for every nodeu, then the probability of reaching any node at depthd is
bounded byp1 « (qd.

Parameter learning for ProPPR is performed in [Wang et al., 2015] by
stochastic gradient descent.

84 Probabilistic Logic Programming Languages

2.12 Other Semantics for Probabilistic Logics

In this section, we discuss semantics for probabilistic logic languages that are
not based on logic programming.

2.12.1 NilssonÕs Probabilistic Logic

NilssonÕs probabilistic logic [Nilsson, 1986] takes an approach for combining
logic and probability that is different from the DS: while the Þrst considers
sets of distributions, the latter computes a single distribution over possible
worlds. In NilssonÕs logic, aprobabilistic interpretationP r deÞnes a prob-
ability distribution over the set of interpretationsInt2 . Theprobability of a
logical formulaF according toP r , denotedP rpF q, is the sum of allP rpI q
such thatI P Int2 andI (F . A probabilistic knowledge baseK is a set of
probabilistic formulas of the formF % p. A probabilistic interpretationP r
satisÞesF % p iff P rpF q % p. P r satisÞesK, or P r is a modelof K, iff
P r satisÞes allF % p P K. P rpF q %p is atight logical consequenceof K
iff p is the inÞmum ofP rpF q in the set of all modelsP r of K. Computing
tight logical consequences from probabilistic knowledge bases can be done
by solving a linear optimization problem.

With NilssonÕs logic, the consequences that can be obtained from logical
formulas differ from those of the DS. Consider a ProbLog program (see
Section 2.1) composed of the facts0.4 :: cpaq and 0.5 :: cpbq, and a
probabilistic knowledge base composed ofcpaq %0.4 andcpbq %0.5. For
the DS,Ppcpaq _ cpbqq Ò0.7, while with NilssonÕs logic, the lowestp such
thatP rpcpaq _ cpbqq %p holds is 0.5. This difference is due to the fact that,
while NilssonÕs logic makes no assumption about the independence of the
statements, in the DS, the probabilistic axioms are considered as indepen-
dent. While independencies can be encoded in NilssonÕs logic by carefully
choosing the values of the parameters, reading off the independencies from
the theories becomes more difÞcult.

However, the assumption of independence of probabilistic axioms does
not restrict expressiveness as shown in Section 2.6.

2.12.2 Markov Logic Networks

A Markov Logic Network (MLN) is a Þrst-order logical theory in which each
sentence is associated with a real-valued weight. An MLN is a template for
generating MNs. Given sets of constants deÞning the domains of the logical
variables, an MLN deÞnes an MN that has a Boolean node for each ground

2.12 Other Semantics for Probabilistic Logics85

atom and edges connecting the atoms appearing together in a grounding of
a formula. MLNs follow the KBMC approach for deÞning a probabilistic
model [Wellman et al., 1992; Bacchus, 1993]. The probability distribution
encoded by an Markov Logic Network (MLN) is

Ppxq Ò
1
Z

expp
Ø

f i PM

wi ni pxqq

wherex is a joint assignment of truth value to all atoms in the Herbrand base
(Þnite because of no function symbols),M is the MLN,f i is thei -th formula
in M , wi is its weight,ni pxqis the number of groundings of formulaf i that
are satisÞed inx, andZ is a normalization constant.

Example 39 (Markov Logic Network). The following MLN encodes a theory
on the intelligence of friends and on the marks people get:

1.5 Intelligent(x) => GoodMarks(x)
1.1 Friends(x,y) => (Intelligent(x)<=>

Intelligent(y))

The Þrst formula gives a positive weight to the fact that if someone is
intelligent, then he gets good marks in the exams he takes. The second formula
gives a positive weight to the fact that friends have similar intelligence: in
particular, the formula states that ifx andy are friends, thenx is intelligent
if and only ify is intelligent, so they are either both intelligent or both not
intelligent.

If the domain contains two individuals, Anna and Bob, indicated with A
and B, we get the ground MN of Figure 2.10.

2.12.2.1 Encoding Markov Logic Networks with Probabilistic
Logic Programming

It is possible to encode MNs and MLNs with LPADs. The encoding is based
on the BN that is equivalent to the MN as discussed in Section 1.6: an MN

Figure 2.10 Ground Markov network for the MLN of Example 39.

86 Probabilistic Logic Programming Languages

factor can be represented with an extra node in the equivalent BN that is
always observed. In order to model MLN formulas with LPADs, we can add
an extra atomclausei pXq for each formulaFi Ò wi Ci wherewi is the
weight associated withCi andX is the vector of variables appearing inCi .
Then, when we ask for the probability of queryq given evidencee, we have
to ask for the probability ofq givene^ ce, whereceis the conjunction of the
groundings ofclausei pXqfor all values ofi .

ClauseCi must be transformed into a Disjunctive Normal Form (DNF)
formulaCi 1 _ . . . _ Cin i , where the disjuncts are mutually exclusive and the
LPAD should contain the clauses

clausei pXq: e&{p1 ` e&q ! Cij

for all j in 1, ..., ni , where1 ` e& % maxxi) px i q Ò maxt 1, e&u. Similarly,
$ Ci must be transformed into a DNFDi 1 _ . . ._ Dim i and the LPAD should
contain the clauses

clausei pXq: 1{p1 ` e&q ! Dil

for all l in 1, ..., mi .
Moreover, for each predicatep{n, we should add the clause

ppXq: 0.5.

to the program, assigninga priori uniform probability to every ground atom.
Alternatively, if (is negative, e& will be smaller than 1 and

maxxi) px i q Ò 1. So we can use the two probability valuese& and 1 with
the clauses

clausei pXq : e& ! Cij .

clausei pXq ! Dil .

This solution has the advantage that some clauses are non-probabilistic,
reducing the number of random variables. If(is positive in the formula(C ,
we can consider the equivalent formula« ($ C.

The transformation above is illustrated by the following example. Given
the MLN

1.5 Intelligent(x) => GoodMarks(x)
1.1 Friends(x,y) => (Intelligent(x)<=>Intelligent(y))

2.12 Other Semantics for Probabilistic Logics87

the Þrst formula is translated to the clauses:

clause1(X):0.8175 :- \+intelligent(X).
clause1(X):0.1824 :- intelligent(X),

\+good_marks(X).
clause1(X):0.8175 :- intelligent(X),good_marks(X).

where0.8175Ò e1.5{p1 ` e« 1.5qand0.1824Ò 1{p1 ` e« 1.5q.
The second formula is translated to the clauses

clause2(X,Y):0.7502 :- \+friends(X,Y).
clause2(X,Y):0.7502 :- friends(X,Y),

intelligent(X),
intelligent(Y).

clause2(X,Y):0.7502 :- friends(X,Y),
\+intelligent(X),
\+intelligent(Y).

clause2(X,Y):0.2497 :- friends(X,Y),
intelligent(X),
\+intelligent(Y).

clause2(X,Y):0.2497 :- friends(X,Y),
\+intelligent(X),
intelligent(Y).

where0.7502Ò e1.1{p1 ` e1.1qand0.2497Ò 1{p1 ` e1.1q.
A priori we have a uniform distribution over student intelligence, good

marks, and friendship:

intelligent(_):0.5.
good_marks(_):0.5.
friends(_,_):0.5.

and there are two students:

student(anna).
student(bob).

We have evidence that Anna is friend with Bob and Bob is intelligent.
The evidence must also include the truth of all groundings of theclausei
predicates:

evidence_mln :- clause1(anna),clause1(bob),
clause2(anna,anna),clause2(anna,bob),
clause2(bob,anna),clause2(bob,bob).

ev_intelligent_bob_friends_anna_bob :-
intelligent(bob),friends(anna,bob),
evidence_mln.

88 Probabilistic Logic Programming Languages

The probability that Anna gets good marks given the evidence is thus

Ppgood marks(anna)|ev intelligent bob friends anna bobq

while the prior probability of Anna getting good marks is given by

Ppgood marks(anna)q.

The probability resulting from the Þrst query is higher (P Ò 0.733) than the
second query (P Ò 0.607), since it is conditioned to the evidence that Bob is
intelligent and Anna is his friend.

In the alternative transformation, the Þrst MLN formula is translated to:

clause1(X) :- \+intelligent(X).
clause1(X):0.2231 :- intelligent(X),\+good_marks(X).
clause1(X) :- intelligent(X), good_marks(X).

where0.2231Ò e« 1.5.
MLN formulas can also be added to a regular probabilistic logic program.

In this case, their effect is equivalent to a soft form of evidence, where certain
worlds are weighted more than others. This is the same as soft evidence in
Figaro [Pfeffer, 2016]. MLN hard constraints, i.e., formulas with an inÞnite
weight, can instead be used to rule out completely certain worlds, those
violating the constraint. For example, given hard constraintC equivalent to
the disjunctionCi 1 _ . . . _ Cin i , the LPAD should contain the clauses

clausei pXq ! Cij

for all j , and the evidence should containclausei pxq for all groundings
x of X. In this way, the worlds that violateC are ruled out.

2.12.3 Annotated Probabilistic Logic Programs

In Annotated Probabilistic Logic Programming (APLP) [Ng and Subrah-
manian, 1992], program atoms are annotated with intervals that can be
interpreted probabilistically. An example rule in this approach is:

a : r0.75, 0.85s ! b : r1, 1s, c : r0.5, 0.75s

that states that the probability ofa is between0.75 and0.85 if b is certainly
true and the probability ofc is between0.5 and0.75. The probability interval
of a conjunction or disjunction of atoms is deÞned using acombinatorto

2.12 Other Semantics for Probabilistic Logics89

construct the tightest bounds for the formula. For instance, ifd is annotated
with rld, hdsande with rle, hes, the probability ofe^ d is annotated with

rmaxp0, ld ` le « 1q, min phd, heqs.

Using these combinators, an inference operator and Þxpoint semantics is
deÞned for positive Datalog programs. A model theory is obtained for
such programs by considering the annotations as constraints on acceptable
probabilistic worlds: an APLP thus describes a family of probabilistic worlds.

APLPs have the advantage that deduction is of low complexity, as the
logic is truth-functional, i.e., the probability of a query can be computed
directly using combinators. The corresponding disadvantages are that APLPs
may be inconsistent if they are not carefully written, and that the use of
the above combinators may quickly lead to assigning overly slack proba-
bility intervals to certain atoms. These aspects are partially addressed by
hybrid APLPs Dekhtyar and Subrahmanian [2000], which allow different
ßavors of combinators based on, e.g., independence or mutual exclusivity
of given atoms.

