
Preface

The field of Probabilistic Logic Programming (PLP) was started in the
early 1990s by seminal works such as those of [Dantsin, 1991], [Ng and
Subrahmanian, 1992], [Poole, 1993b], and [Sato, 1995].

However, the problem of combining logic and probability has been
studied since the 1950s [Carnap, 1950; Gaifman, 1964]. Then the problem
became prominent in the field of Artificial Intelligence in the late 1980s to
early 1990s when researchers tried to reconcile the probabilistic and logical
approaches to AI [Nilsson, 1986; Halpern, 1990; Fagin and Halpern, 1994;
Halpern, 2003].

The integration of logic and probability combines the capability of the
first to represent complex relations among entities with the capability of the
latter to model uncertainty over attributes and relations. Logic programming
provides a Turing complete language based on logic and thus represents an
excellent candidate for the integration.

Since its birth, the field of Probabilistic Logic Programming has seen a
steady increase of activity, with many proposals for languages and algorithms
for inference and learning. The language proposals can be grouped into two
classes: those that use a variant of the Distribution Semantics (DS) [Sato,
1995] and those that follow a Knowledge Base Model Construction (KBMC)
approach [Wellman et al., 1992; Bacchus, 1993].

Under the DS, a probabilistic logic program defines a probability distribu-
tion over normal logic programs and the probability of a ground query is then
obtained from the joint distribution of the query and the programs. Some of
the languages following the DS are: Probabilistic Logic Programs [Dantsin,
1991], Probabilistic Horn Abduction [Poole, 1993b], PRISM [Sato, 1995],
Independent Choice Logic [Poole, 1997], pD [Fuhr, 2000], Logic Programs
with Annotated Disjunctions [Vennekens et al., 2004], ProbLog [De Raedt
et al., 2007], P-log [Baral et al., 2009], and CP-logic [Vennekens et al., 2009].

Instead, in KBMC languages, a program is seen as a template for
generating a ground graphical model, be it a Bayesian network or a
Markov network. KBMC languages include Relational Bayesian Network

xiii



xiv Preface

[Jaeger, 1998], CLP(BN) [Costa et al., 2003], Bayesian Logic Programs
[Kersting and De Raedt, 2001], and the Prolog Factor Language [Gomes and
Costa, 2012]. The distinction among DS and KBMC languages is actually
non-sharp as programs in languages following the DS can also be translated
into graphical models.

This book aims at providing an overview of the field of PLP, with a
special emphasis on languages under the DS. The reason is that their approach
to logic-probability integration is particularly simple and coherent across
languages but nevertheless powerful enough to be useful in a variety of
domains. Moreover, they can be given a semantics in purely logical terms,
without necessarily resorting to a translation into graphical models.

The book doesn’t aim though at being a complete account of the topic,
even when restricted to the DS, as the field has grown large, with a dedicated
workshop series started in 2014. My objective is to present the main ideas for
semantics, inference, and learning and to highlight connections between the
methods.

The intended audience of the book are researchers in Computer Science
and AI that want to get an overview of PLP. However, it can also be used
by students, especially graduate, to get acquainted with the topic, and by
practitioners that would like to get more details on the inner workings of
methods.

Many examples of the book include a link to a page of the web application
cplint on SWISH (http://cplint.eu) [Riguzzi et al., 2016a; Alberti et al.,
2017], where the code can be run online using cplint, a system we devel-
oped at the University of Ferrara that includes many algorithms for inference
and learning in a variety of languages.

The book starts with Chapter 1 that presents preliminary notions of logic
programming and graphical models. Chapter 2 introduces the languages
under the DS, discusses the basic form of the semantics, and compares it
with alternative approaches in PLP and AI in general. Chapters 3 and 4
describe the semantics for more complex cases, the first of languages allow-
ing function symbols and the latter allowing continuous random variables.
Chapter 5 presents various algorithms for exact inference. Lifted inference is
discussed in Chatper 6 and approximate inference in Chapter 7. Non-standard
inference problems are illustrated in Chapter 8. Then Chapters 9 and 10 treat
the problem of learning parameters and structure of programs, respectively.
Chapter 11 presents some examples of use of the system cplint. Chapter 12
concludes the book discussing open problems.

http://cplint.eu

